UNSUPERVISED SEMANTIC SEGMENTATION OF KIDNEYS USING RADIAL TRANSFORM SAMPLING ON LIMITED IMAGES

H. Salehinejad, S. Naqvi, E. Colak, J. Barfett, S. Valaee
{"title":"UNSUPERVISED SEMANTIC SEGMENTATION OF KIDNEYS USING RADIAL TRANSFORM SAMPLING ON LIMITED IMAGES","authors":"H. Salehinejad, S. Naqvi, E. Colak, J. Barfett, S. Valaee","doi":"10.1109/GlobalSIP.2018.8646662","DOIUrl":null,"url":null,"abstract":"Efficient training of supervised deep learning models for semantic segmentation requires a massive volume of annotated data. In this paper, we propose an unsupervised semantic segmentation method through the application of a radial transform method in the polar coordinate system to unannotated images. This method generates radial transformed images up to the number of pixels in the input image. Each generated image corresponds to a pixel in the original image, which is a spatial representation of the selected pixel with respect to other pixels, in the polar coordinate system. A dimension reduction method, such as a convolutional autoencoder (CAE), can extract features of these representations for clustering and later, labeling the original image by mapping the labels back to the original image. The advantage of the proposed radial transform technique is that it generates a massive number of training images by sampling pixels in the polar coordinate system from a very limited number of original images in the Cartesian coordinate system. The proposed approach achieved 88.20% accuracy in pixel-level segmentation of left kidney, right kidney, and non-kidney pixels in contrast-enhanced computed tomography (CT) images.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Efficient training of supervised deep learning models for semantic segmentation requires a massive volume of annotated data. In this paper, we propose an unsupervised semantic segmentation method through the application of a radial transform method in the polar coordinate system to unannotated images. This method generates radial transformed images up to the number of pixels in the input image. Each generated image corresponds to a pixel in the original image, which is a spatial representation of the selected pixel with respect to other pixels, in the polar coordinate system. A dimension reduction method, such as a convolutional autoencoder (CAE), can extract features of these representations for clustering and later, labeling the original image by mapping the labels back to the original image. The advantage of the proposed radial transform technique is that it generates a massive number of training images by sampling pixels in the polar coordinate system from a very limited number of original images in the Cartesian coordinate system. The proposed approach achieved 88.20% accuracy in pixel-level segmentation of left kidney, right kidney, and non-kidney pixels in contrast-enhanced computed tomography (CT) images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向变换采样的肾脏无监督语义分割
有效地训练用于语义分割的监督深度学习模型需要大量带注释的数据。在本文中,我们提出了一种无监督的语义分割方法,该方法通过在极坐标系中应用径向变换方法对无注释的图像进行分割。该方法生成径向变换的图像,直至输入图像中的像素数。每个生成的图像对应于原始图像中的一个像素,这是所选像素相对于其他像素在极坐标系中的空间表示。一种降维方法,如卷积自编码器(CAE),可以提取这些表示的特征用于聚类,然后通过将标签映射回原始图像来标记原始图像。所提出的径向变换技术的优点在于,它通过从笛卡尔坐标系中非常有限的原始图像中采样极坐标系中的像素来生成大量的训练图像。该方法在对比度增强计算机断层扫描(CT)图像中左肾、右肾和非肾像素的像素级分割准确率达到88.20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1