Call classification for automated troubleshooting on large corpora

Keelan Evanini, David Suendermann-Oeft, R. Pieraccini
{"title":"Call classification for automated troubleshooting on large corpora","authors":"Keelan Evanini, David Suendermann-Oeft, R. Pieraccini","doi":"10.1109/ASRU.2007.4430110","DOIUrl":null,"url":null,"abstract":"This paper compares six algorithms for call classification in the framework of a dialog system for automated troubleshooting. The comparison is carried out on large datasets, each consisting of over 100,000 utterances from two domains: television (TV) and Internet (INT). In spite of the high number of classes (79 for TV and 58 for INT), the best classifier (maximum entropy on word bigrams) achieved more than 77% classification accuracy on the TV dataset and 81% on the INT dataset.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper compares six algorithms for call classification in the framework of a dialog system for automated troubleshooting. The comparison is carried out on large datasets, each consisting of over 100,000 utterances from two domains: television (TV) and Internet (INT). In spite of the high number of classes (79 for TV and 58 for INT), the best classifier (maximum entropy on word bigrams) achieved more than 77% classification accuracy on the TV dataset and 81% on the INT dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
呼叫分类用于大型语料库的自动故障排除
本文比较了在自动故障排除对话系统框架下的6种呼叫分类算法。比较是在大型数据集上进行的,每个数据集由来自两个领域的10万多个话语组成:电视(TV)和互联网(INT)。尽管有大量的分类(TV为79个,INT为58个),但最好的分类器(词双元图的最大熵)在TV数据集上实现了77%以上的分类准确率,在INT数据集上实现了81%以上的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1