Comparative Study of Apache Pig & Apache Cassandra in Hadoop Distributed Environment

Y. Gupta, Tanusha Mittal
{"title":"Comparative Study of Apache Pig & Apache Cassandra in Hadoop Distributed Environment","authors":"Y. Gupta, Tanusha Mittal","doi":"10.1109/ICECA49313.2020.9297532","DOIUrl":null,"url":null,"abstract":"Big data analytics is the one which acquire, organise and analyse the huge volume of data with high velocity to find some patterns and useful information. The data sets are so large that it can’t be handled by traditional databases to manage and process the structure and unstructured data. Hence, big data tools i.e. Hadoop, is required due to its high scalability, availability and cluster environment mechanism for analysing large volume of data. MapReduce is one of the important components of Hadoop which is able to handle the unstructured data. But to use MapReduce, high programming skills are needed. Therefore, due to the reason of programming, users are moving towards some other tools i.e. Apache Pig or Apache Cassandra. In these tools, the data is simply analysed by executing the queries or commands. This paper will discuss about the architectural of Apache Pig and Apache Cassandra and afterwards both the technologies regarding some factors are compared to find out which one is better.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Big data analytics is the one which acquire, organise and analyse the huge volume of data with high velocity to find some patterns and useful information. The data sets are so large that it can’t be handled by traditional databases to manage and process the structure and unstructured data. Hence, big data tools i.e. Hadoop, is required due to its high scalability, availability and cluster environment mechanism for analysing large volume of data. MapReduce is one of the important components of Hadoop which is able to handle the unstructured data. But to use MapReduce, high programming skills are needed. Therefore, due to the reason of programming, users are moving towards some other tools i.e. Apache Pig or Apache Cassandra. In these tools, the data is simply analysed by executing the queries or commands. This paper will discuss about the architectural of Apache Pig and Apache Cassandra and afterwards both the technologies regarding some factors are compared to find out which one is better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apache Pig与Apache Cassandra在Hadoop分布式环境下的比较研究
大数据分析是对海量数据进行快速获取、整理和分析,从中发现一些规律和有用信息的一门学科。数据集非常庞大,传统数据库无法对结构化和非结构化数据进行管理和处理。因此,需要大数据工具,如Hadoop,因为它具有高可扩展性,可用性和集群环境机制,可以分析大量数据。MapReduce是Hadoop中处理非结构化数据的重要组件之一。但是要使用MapReduce,需要很高的编程技能。因此,由于编程的原因,用户正在转向其他一些工具,如Apache Pig或Apache Cassandra。在这些工具中,只需通过执行查询或命令来分析数据。本文将讨论Apache Pig和Apache Cassandra的体系结构,然后将两种技术在一些因素上进行比较,找出哪一种技术更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Prosodic features for the degree of emotions of an Assamese Emotional Speech MCU system based on IEC61508 for Autonomous Functional safety platform Comparative analysis of facial recognition models using video for real time attendance monitoring system Analysis of using IoT Sensors in Healthcare units Supported by Cloud Computing Human Friendly Smart Trolley with Automatic Billing System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1