A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata

Fahad Anwar, N. Iltaf, H. Afzal, Haider Abbas
{"title":"A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata","authors":"Fahad Anwar, N. Iltaf, H. Afzal, Haider Abbas","doi":"10.1109/WETICE.2019.00071","DOIUrl":null,"url":null,"abstract":"Recommender systems improve browsing experience of users for large amount of items by assisting selection and classification of items utilizing item metadata. The performance of recommender system usually deteriorates when implicit data is used with limited user interaction history also regarded as cold start (CS) problem. This paper proposes a model to address cold start problem using content based technique where user or item metadata is used to break this ice barrier. The proposed method utilizes the feature extraction techniques (such as term frequencyInverse document frequency(TF-IDF)) and word embedding technique (Word2Vec). These content features are then used to predict the ratings for CS items by constructing user profiles using stacked auto-encoder. Experiments performed on largest real world dataset provided by Movielens 20M shows that proposed model outperforms the state-of-the-art approaches in CS item scenario.","PeriodicalId":116875,"journal":{"name":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2019.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recommender systems improve browsing experience of users for large amount of items by assisting selection and classification of items utilizing item metadata. The performance of recommender system usually deteriorates when implicit data is used with limited user interaction history also regarded as cold start (CS) problem. This paper proposes a model to address cold start problem using content based technique where user or item metadata is used to break this ice barrier. The proposed method utilizes the feature extraction techniques (such as term frequencyInverse document frequency(TF-IDF)) and word embedding technique (Word2Vec). These content features are then used to predict the ratings for CS items by constructing user profiles using stacked auto-encoder. Experiments performed on largest real world dataset provided by Movielens 20M shows that proposed model outperforms the state-of-the-art approaches in CS item scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用项目元数据预测冷启动项目评级的深度学习框架
推荐系统通过利用项目元数据来帮助用户选择和分类大量项目,从而改善用户的浏览体验。隐式数据的使用和用户交互历史的限制通常会导致推荐系统的性能下降,这也被认为是冷启动问题。本文提出了一个使用基于内容的技术来解决冷启动问题的模型,其中使用用户或项目元数据来打破这个冰障。该方法利用了词频、逆文档频率(TF-IDF)等特征提取技术和词嵌入技术(Word2Vec)。然后使用这些内容特征通过使用堆叠自动编码器构建用户配置文件来预测CS项目的评级。在Movielens 20M提供的最大真实世界数据集上进行的实验表明,所提出的模型在CS项目场景中优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time SCADA Attack Detection by Means of Formal Methods Architecture of Anomaly Detection Module for the Security Operations Center Privacy Preserving Intrusion Detection Via Homomorphic Encryption A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata Mining Developer's Behavior from Web-Based IDE Logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1