K-complex identification in sleep EEG using MELM-GRBF classifier

Seyed Mohammad Reza Noori, Amin Hekmatmanesh, M. Mikaeili, K. Sadeghniiat-haghighi
{"title":"K-complex identification in sleep EEG using MELM-GRBF classifier","authors":"Seyed Mohammad Reza Noori, Amin Hekmatmanesh, M. Mikaeili, K. Sadeghniiat-haghighi","doi":"10.1109/ICBME.2014.7043905","DOIUrl":null,"url":null,"abstract":"K-complexes like spindles are hallmark patterns of stage 2 sleep. Due to correlation between these patterns and some diseases, it is necessary to develop algorithms to detect them. In this study, a new method is used to detect K-complexes automatically. 10 time-series and chaotic features were used in order to extract the K-complex waves from stage 2 sleep. To use the most effective features, feature space dimension is reduced with Sequential Forward Selection method. The reduced feature space is classified using Generalized Radial Basis Function Extreme Learning Machine (MELM-GRBF) algorithm. GRBFs make the modification of the RBF possible by adjusting a new parameter τ. We're applied this methodology to K-complex classification for the first time. The classifier gives noticeably better results compared to ELM-RBF method for sensitivity and accuracy 61.00 ± 6.6 and 96.15 ± 3.7, respectively.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

K-complexes like spindles are hallmark patterns of stage 2 sleep. Due to correlation between these patterns and some diseases, it is necessary to develop algorithms to detect them. In this study, a new method is used to detect K-complexes automatically. 10 time-series and chaotic features were used in order to extract the K-complex waves from stage 2 sleep. To use the most effective features, feature space dimension is reduced with Sequential Forward Selection method. The reduced feature space is classified using Generalized Radial Basis Function Extreme Learning Machine (MELM-GRBF) algorithm. GRBFs make the modification of the RBF possible by adjusting a new parameter τ. We're applied this methodology to K-complex classification for the first time. The classifier gives noticeably better results compared to ELM-RBF method for sensitivity and accuracy 61.00 ± 6.6 and 96.15 ± 3.7, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MELM-GRBF分类器的睡眠脑电k复合体识别
像纺锤波这样的k复合体是第二阶段睡眠的标志。由于这些模式与某些疾病之间存在相关性,因此有必要开发算法来检测它们。本文提出了一种自动检测k -配合物的新方法。利用时间序列和混沌特征提取第二阶段睡眠的k -复波。为了使用最有效的特征,采用顺序前向选择方法降维特征空间。利用广义径向基函数极限学习机(MELM-GRBF)算法对约简特征空间进行分类。grbf通过调整一个新的参数τ使RBF的修正成为可能。我们首次将这种方法应用到k复分类中。与ELM-RBF方法相比,该分类器的灵敏度和准确率分别为61.00±6.6和96.15±3.7,结果明显更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A time-delay parallel cascade identification system for predicting jaw movements Automated decomposition of needle EMG signal using STFT and wavelet transforms Sparse representation-based super-resolution for diffusion weighted images Investigation of Brain Default Network's activation in autism spectrum disorders using Group Independent Component Analysis Pragmatic modeling of chaotic dynamical systems through artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1