Seyed Mohammad Reza Noori, Amin Hekmatmanesh, M. Mikaeili, K. Sadeghniiat-haghighi
{"title":"K-complex identification in sleep EEG using MELM-GRBF classifier","authors":"Seyed Mohammad Reza Noori, Amin Hekmatmanesh, M. Mikaeili, K. Sadeghniiat-haghighi","doi":"10.1109/ICBME.2014.7043905","DOIUrl":null,"url":null,"abstract":"K-complexes like spindles are hallmark patterns of stage 2 sleep. Due to correlation between these patterns and some diseases, it is necessary to develop algorithms to detect them. In this study, a new method is used to detect K-complexes automatically. 10 time-series and chaotic features were used in order to extract the K-complex waves from stage 2 sleep. To use the most effective features, feature space dimension is reduced with Sequential Forward Selection method. The reduced feature space is classified using Generalized Radial Basis Function Extreme Learning Machine (MELM-GRBF) algorithm. GRBFs make the modification of the RBF possible by adjusting a new parameter τ. We're applied this methodology to K-complex classification for the first time. The classifier gives noticeably better results compared to ELM-RBF method for sensitivity and accuracy 61.00 ± 6.6 and 96.15 ± 3.7, respectively.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
K-complexes like spindles are hallmark patterns of stage 2 sleep. Due to correlation between these patterns and some diseases, it is necessary to develop algorithms to detect them. In this study, a new method is used to detect K-complexes automatically. 10 time-series and chaotic features were used in order to extract the K-complex waves from stage 2 sleep. To use the most effective features, feature space dimension is reduced with Sequential Forward Selection method. The reduced feature space is classified using Generalized Radial Basis Function Extreme Learning Machine (MELM-GRBF) algorithm. GRBFs make the modification of the RBF possible by adjusting a new parameter τ. We're applied this methodology to K-complex classification for the first time. The classifier gives noticeably better results compared to ELM-RBF method for sensitivity and accuracy 61.00 ± 6.6 and 96.15 ± 3.7, respectively.