{"title":"TopSelect","authors":"Hadil Abukwaik, L. Šula, Pablo Rodríguez","doi":"10.1145/3522664.3528618","DOIUrl":null,"url":null,"abstract":"Building robust industrial machine learning (ML) models requires incorporating domain knowledge in feature selection. This ensures building meaningful ML models that fit the context of the industrial process that consists of complex networks of thousands of elements interconnected by flows of material, energy, and information. Despite the various automatic feature selection methods, they are still outperformed by the manual feature selection that embeds the industrial domain knowledge. This paper proposes an industrial feature selection method that (1) automatically captures domain knowledge from topology models holding information on the industrial plant and (2) identifies the relevant process signals (i.e., features) to a specified process element (i.e., to which an ML model is being built). We performed an empirical case study on an industrial use case to evaluate the effectiveness and efficiency of the proposed method in comparison to existing ones from literature.","PeriodicalId":378109,"journal":{"name":"Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3522664.3528618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Building robust industrial machine learning (ML) models requires incorporating domain knowledge in feature selection. This ensures building meaningful ML models that fit the context of the industrial process that consists of complex networks of thousands of elements interconnected by flows of material, energy, and information. Despite the various automatic feature selection methods, they are still outperformed by the manual feature selection that embeds the industrial domain knowledge. This paper proposes an industrial feature selection method that (1) automatically captures domain knowledge from topology models holding information on the industrial plant and (2) identifies the relevant process signals (i.e., features) to a specified process element (i.e., to which an ML model is being built). We performed an empirical case study on an industrial use case to evaluate the effectiveness and efficiency of the proposed method in comparison to existing ones from literature.