H. Kim, Kook-Nyung Lee, Min-Ho Lee, Hyeong-U. Kim, Chisung Ahn, Taesung Kim
{"title":"Electrochemical biosensor based on MoS2/Graphene for highly sensitive detection of human parathyroid hormone","authors":"H. Kim, Kook-Nyung Lee, Min-Ho Lee, Hyeong-U. Kim, Chisung Ahn, Taesung Kim","doi":"10.1109/NANOMED.2015.7492506","DOIUrl":null,"url":null,"abstract":"A self-assembled novel nanocomposite composed of MoS2-Graphene nanosheets (MoS2-GNS) composites were electrostatically formed on top of gold (Au) electrode and their biochemical amplification responses were reported. The properties of the MoS2-GNS were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FT-IR). Cyclic voltammetry was performed in the presence of Parathyroid Hormone (PTH) and its linearity was obtained by measuring the anodic current signals coming from interactions between MoS2-GNS-Ab and different concentrations of PTH with the aid of substrate and enzyme conjugated secondary antibodies.","PeriodicalId":187049,"journal":{"name":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2015.7492506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A self-assembled novel nanocomposite composed of MoS2-Graphene nanosheets (MoS2-GNS) composites were electrostatically formed on top of gold (Au) electrode and their biochemical amplification responses were reported. The properties of the MoS2-GNS were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FT-IR). Cyclic voltammetry was performed in the presence of Parathyroid Hormone (PTH) and its linearity was obtained by measuring the anodic current signals coming from interactions between MoS2-GNS-Ab and different concentrations of PTH with the aid of substrate and enzyme conjugated secondary antibodies.