Channel Estimation In Intelligent Reflecting Surfaces for 5G and Beyond

Ural Mutlu, Y. Kabalci
{"title":"Channel Estimation In Intelligent Reflecting Surfaces for 5G and Beyond","authors":"Ural Mutlu, Y. Kabalci","doi":"10.1109/gpecom55404.2022.9815683","DOIUrl":null,"url":null,"abstract":"Intelligent Reflecting Surfaces (IRS) are constructed of multiple independently controllable passive Reflecting Elements (RE), which can change the phase and amplitude of the reflected signals so that the reflected signals can be combined in coherent manner to achieve beamforming. To facilitate beamforming, the channel coefficients of the incoming and outgoing channels need to be estimated. In this study, the Discrete Fourier Transform (DFT) based channel estimation method is applied to an IRS-assisted communication system implementing Fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveform in order to observe the effectiveness of the estimation method. DFT-based channel estimation has the advantage of not using the whole OFDM symbol for pilot transmission, thus it can be performed while transmitting data. Therefore, the effects of multipath delay spread, the number of REs, and training sequence sparsity in the OFDM symbol are observed for different Signal-to-Noise Ratio (SNR) values with a direct path and without a direct path. The results show that delay spread has a significant effect on the performance and training sequence length can be reduced.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intelligent Reflecting Surfaces (IRS) are constructed of multiple independently controllable passive Reflecting Elements (RE), which can change the phase and amplitude of the reflected signals so that the reflected signals can be combined in coherent manner to achieve beamforming. To facilitate beamforming, the channel coefficients of the incoming and outgoing channels need to be estimated. In this study, the Discrete Fourier Transform (DFT) based channel estimation method is applied to an IRS-assisted communication system implementing Fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveform in order to observe the effectiveness of the estimation method. DFT-based channel estimation has the advantage of not using the whole OFDM symbol for pilot transmission, thus it can be performed while transmitting data. Therefore, the effects of multipath delay spread, the number of REs, and training sequence sparsity in the OFDM symbol are observed for different Signal-to-Noise Ratio (SNR) values with a direct path and without a direct path. The results show that delay spread has a significant effect on the performance and training sequence length can be reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G及以后智能反射面的信道估计
智能反射面(IRS)由多个独立可控的被动反射元件(RE)组成,通过改变反射信号的相位和幅度,使反射信号进行相干组合,实现波束形成。为了方便波束形成,需要估计输入和输出信道的信道系数。本研究将基于离散傅立叶变换(DFT)的信道估计方法应用于实现第五代(5G)正交频分复用(OFDM)波形的irs辅助通信系统,以观察该估计方法的有效性。基于dft的信道估计具有不使用整个OFDM符号进行导频传输的优点,因此可以在传输数据时进行信道估计。因此,在有直接路径和没有直接路径的不同信噪比(SNR)值下,观察了OFDM符号中多径延迟扩展、REs数和训练序列稀疏度的影响。结果表明,延迟扩展对性能有显著影响,可以减少训练序列长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted Emissions Analysis of DC-DC Buck Converter A Study on the Effect of Phase Shifter Quantization Error on the Spectral Efficiency Using Neural Network Delay Margin Computation of Generator Excitation Control System with Incommensurate Time Delays Using Critical Eigenvalue Tracing Method ICT Enabled Smart Street Parking System for Smart Cities Experimental Impact Analysis of the Refrigerator Cable Design On Disturbance Power Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1