Learning Hierarchical Semantic Correspondences for Cross-Modal Image-Text Retrieval

Sheng Zeng, Changhong Liu, J. Zhou, Yong Chen, Aiwen Jiang, Hanxi Li
{"title":"Learning Hierarchical Semantic Correspondences for Cross-Modal Image-Text Retrieval","authors":"Sheng Zeng, Changhong Liu, J. Zhou, Yong Chen, Aiwen Jiang, Hanxi Li","doi":"10.1145/3512527.3531358","DOIUrl":null,"url":null,"abstract":"Cross-modal image-text retrieval is a fundamental task in information retrieval. The key to this task is to address both heterogeneity and cross-modal semantic correlation between data of different modalities. Fine-grained matching methods can nicely model local semantic correlations between image and text but face two challenges. First, images may contain redundant information while text sentences often contain words without semantic meaning. Such redundancy interferes with the local matching between textual words and image regions. Furthermore, the retrieval shall consider not only low-level semantic correspondence between image regions and textual words but also a higher semantic correlation between different intra-modal relationships. We propose a multi-layer graph convolutional network with object-level, object-relational-level, and higher-level learning sub-networks. Our method learns hierarchical semantic correspondences by both local and global alignment. We further introduce a self-attention mechanism after the word embedding to weaken insignificant words in the sentence and a cross-attention mechanism to guide the learning of image features. Extensive experiments on Flickr30K and MS-COCO datasets demonstrate the effectiveness and superiority of our proposed method.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cross-modal image-text retrieval is a fundamental task in information retrieval. The key to this task is to address both heterogeneity and cross-modal semantic correlation between data of different modalities. Fine-grained matching methods can nicely model local semantic correlations between image and text but face two challenges. First, images may contain redundant information while text sentences often contain words without semantic meaning. Such redundancy interferes with the local matching between textual words and image regions. Furthermore, the retrieval shall consider not only low-level semantic correspondence between image regions and textual words but also a higher semantic correlation between different intra-modal relationships. We propose a multi-layer graph convolutional network with object-level, object-relational-level, and higher-level learning sub-networks. Our method learns hierarchical semantic correspondences by both local and global alignment. We further introduce a self-attention mechanism after the word embedding to weaken insignificant words in the sentence and a cross-attention mechanism to guide the learning of image features. Extensive experiments on Flickr30K and MS-COCO datasets demonstrate the effectiveness and superiority of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨模态图像-文本检索的分层语义对应学习
跨模态图像-文本检索是信息检索中的一项基本任务。该任务的关键是处理不同模态数据之间的异质性和跨模态语义相关性。细粒度匹配方法可以很好地模拟图像和文本之间的局部语义关联,但面临两个挑战。首先,图像可能包含冗余信息,而文本句子通常包含没有语义的单词。这种冗余干扰了文本单词和图像区域之间的局部匹配。此外,检索不仅要考虑图像区域与文本单词之间的低层次语义对应关系,还要考虑不同模态内关系之间更高层次的语义相关性。我们提出了一个具有对象级、对象关系级和更高级别学习子网络的多层图卷积网络。我们的方法通过局部和全局对齐来学习层次语义对应。我们进一步引入词嵌入后的自注意机制来弱化句子中不重要的词,引入交叉注意机制来指导图像特征的学习。在Flickr30K和MS-COCO数据集上的大量实验证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1