Mammogram image segmentation using granular computing based on rough entropy

R. Roselin, K. Thangavel
{"title":"Mammogram image segmentation using granular computing based on rough entropy","authors":"R. Roselin, K. Thangavel","doi":"10.1109/ICPRIME.2012.6208365","DOIUrl":null,"url":null,"abstract":"The mammography is the most effective procedure for to diagnosis the breast cancer at an early stage. A granule is a mass of objects, in the universe of discourse, put together by indistinguishability, similarity, proximity, or functionality. In mammograms, it is quite difficult to identify the suspicious region which is a mass of calcification on the breast tissue. This paper proposes rough entropy based granular computing to segment mammogram images. The proposed method is evaluated by classification algorithms which are available in WEKA.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The mammography is the most effective procedure for to diagnosis the breast cancer at an early stage. A granule is a mass of objects, in the universe of discourse, put together by indistinguishability, similarity, proximity, or functionality. In mammograms, it is quite difficult to identify the suspicious region which is a mass of calcification on the breast tissue. This paper proposes rough entropy based granular computing to segment mammogram images. The proposed method is evaluated by classification algorithms which are available in WEKA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粗糙熵的乳房x线图像分割的颗粒计算
乳房x光检查是早期诊断乳腺癌最有效的方法。粒子是话语世界中由不可区分性、相似性、接近性或功能性组合在一起的大量物体。在乳房x光检查中,很难确定可疑区域,即乳房组织上的大量钙化。本文提出了基于粗熵的颗粒计算方法对乳房x线图像进行分割。使用WEKA中提供的分类算法对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimized cluster based approach for multi-source multicast routing protocol in mobile ad hoc networks with differential evolution Increasing cluster uniqueness in Fuzzy C-Means through affinity measure Rule extraction from neural networks — A comparative study Text extraction from digital English comic image using two blobs extraction method A novel approach for Kannada text extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1