A Psychologically Informed Part-of-Speech Analysis of Depression in Social Media

Ana-Maria Bucur, Ioana R. Podinua, Liviu P. Dinu
{"title":"A Psychologically Informed Part-of-Speech Analysis of Depression in Social Media","authors":"Ana-Maria Bucur, Ioana R. Podinua, Liviu P. Dinu","doi":"10.26615/978-954-452-072-4_024","DOIUrl":null,"url":null,"abstract":"In this work, we provide an extensive part-of-speech analysis of the discourse of social media users with depression. Research in psychology revealed that depressed users tend to be self-focused, more preoccupied with themselves and ruminate more about their lives and emotions. Our work aims to make use of large-scale datasets and computational methods for a quantitative exploration of discourse. We use the publicly available depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018 and extract part-of-speech features and several indices based on them. Our results reveal statistically significant differences between the depressed and non-depressed individuals confirming findings from the existing psychology literature. Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms, allowing for better-informed computational models to help monitor and prevent mental illnesses.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-072-4_024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this work, we provide an extensive part-of-speech analysis of the discourse of social media users with depression. Research in psychology revealed that depressed users tend to be self-focused, more preoccupied with themselves and ruminate more about their lives and emotions. Our work aims to make use of large-scale datasets and computational methods for a quantitative exploration of discourse. We use the publicly available depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018 and extract part-of-speech features and several indices based on them. Our results reveal statistically significant differences between the depressed and non-depressed individuals confirming findings from the existing psychology literature. Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms, allowing for better-informed computational models to help monitor and prevent mental illnesses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体中抑郁症的心理信息词性分析
在这项工作中,我们对患有抑郁症的社交媒体用户的话语进行了广泛的词性分析。心理学研究表明,抑郁的用户往往以自我为中心,更专注于自己,更多地思考自己的生活和情感。我们的工作旨在利用大规模数据集和计算方法对话语进行定量探索。我们使用来自互联网研讨会(eRisk) 2018年早期风险预测的公开数据集,提取词性特征和基于它们的几个指标。我们的研究结果显示,抑郁和非抑郁个体之间存在统计学上的显著差异,证实了现有心理学文献的发现。我们的工作提供了关于抑郁症患者在社交媒体平台上表达自己的方式的见解,允许更好的信息计算模型来帮助监测和预防精神疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Landscape of Natural Language Processing Research AspectCSE: Sentence Embeddings for Aspect-Based Semantic Textual Similarity Using Contrastive Learning and Structured Knowledge Efficient Domain Adaptation of Sentence Embeddings Using Adapters Neural Machine Translation for Sinhala-English Code-Mixed Text A Domain-Independent Holistic Approach to Deception Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1