Efficient Domain Adaptation of Sentence Embeddings Using Adapters

Tim Schopf, Dennis Schneider, F. Matthes
{"title":"Efficient Domain Adaptation of Sentence Embeddings Using Adapters","authors":"Tim Schopf, Dennis Schneider, F. Matthes","doi":"10.26615/978-954-452-092-2_112","DOIUrl":null,"url":null,"abstract":"Sentence embeddings enable us to capture the semantic similarity of short texts. Most sentence embedding models are trained for general semantic textual similarity tasks. Therefore, to use sentence embeddings in a particular domain, the model must be adapted to it in order to achieve good results. Usually, this is done by fine-tuning the entire sentence embedding model for the domain of interest. While this approach yields state-of-the-art results, all of the model’s weights are updated during fine-tuning, making this method resource-intensive. Therefore, instead of fine-tuning entire sentence embedding models for each target domain individually, we propose to train lightweight adapters. These domain-specific adapters do not require fine-tuning all underlying sentence embedding model parameters. Instead, we only train a small number of additional parameters while keeping the weights of the underlying sentence embedding model fixed. Training domain-specific adapters allows always using the same base model and only exchanging the domain-specific adapters to adapt sentence embeddings to a specific domain. We show that using adapters for parameter-efficient domain adaptation of sentence embeddings yields competitive performance within 1% of a domain-adapted, entirely fine-tuned sentence embedding model while only training approximately 3.6% of the parameters.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"1 1","pages":"1046-1053"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-092-2_112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentence embeddings enable us to capture the semantic similarity of short texts. Most sentence embedding models are trained for general semantic textual similarity tasks. Therefore, to use sentence embeddings in a particular domain, the model must be adapted to it in order to achieve good results. Usually, this is done by fine-tuning the entire sentence embedding model for the domain of interest. While this approach yields state-of-the-art results, all of the model’s weights are updated during fine-tuning, making this method resource-intensive. Therefore, instead of fine-tuning entire sentence embedding models for each target domain individually, we propose to train lightweight adapters. These domain-specific adapters do not require fine-tuning all underlying sentence embedding model parameters. Instead, we only train a small number of additional parameters while keeping the weights of the underlying sentence embedding model fixed. Training domain-specific adapters allows always using the same base model and only exchanging the domain-specific adapters to adapt sentence embeddings to a specific domain. We show that using adapters for parameter-efficient domain adaptation of sentence embeddings yields competitive performance within 1% of a domain-adapted, entirely fine-tuned sentence embedding model while only training approximately 3.6% of the parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用适配器对句子嵌入进行高效的领域适应性调整
句子嵌入使我们能够捕捉短文的语义相似性。大多数句子嵌入模型都是针对一般语义文本相似性任务训练的。因此,要在特定领域使用句子嵌入,必须对模型进行调整,以取得良好的效果。通常,要做到这一点,需要针对感兴趣的领域对整个句子嵌入模型进行微调。虽然这种方法能获得最先进的结果,但在微调过程中,模型的所有权重都要更新,因此这种方法需要大量资源。因此,我们建议训练轻量级适配器,而不是为每个目标域单独微调整个句子嵌入模型。这些针对特定领域的适配器不需要微调所有底层句子嵌入模型参数。相反,我们只需训练少量附加参数,同时保持底层句子嵌入模型的权重固定不变。通过训练特定领域适配器,可以始终使用相同的基础模型,只需交换特定领域适配器即可将句子嵌入调整到特定领域。我们的研究表明,使用适配器对句子嵌入进行参数高效的领域适配,可以获得与完全微调的领域适配句子嵌入模型 1%以内的性能,而只需训练约 3.6% 的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Landscape of Natural Language Processing Research AspectCSE: Sentence Embeddings for Aspect-Based Semantic Textual Similarity Using Contrastive Learning and Structured Knowledge Efficient Domain Adaptation of Sentence Embeddings Using Adapters Neural Machine Translation for Sinhala-English Code-Mixed Text A Domain-Independent Holistic Approach to Deception Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1