MINING OVERLAPPING COMMUNITIES IN REAL-WORLD NETWORKS BASED ON EXTENDED MODULARITY GAIN

S. Chintalapudi, M. K. Prasad
{"title":"MINING OVERLAPPING COMMUNITIES IN REAL-WORLD NETWORKS BASED ON EXTENDED MODULARITY GAIN","authors":"S. Chintalapudi, M. K. Prasad","doi":"10.5829/idosi.ije.2017.30.04a.05","DOIUrl":null,"url":null,"abstract":"Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one community at the same time, that leads to overlapping communities. A novel approach is proposed to detect such overlapping communities by extending the definition of newman’s modularity for overlapping communities. The proposed algorithm is tested on LFR benchmark networks with overlapping communities and on real-world networks. The performance of the algorithm is evaluated using popular metrics such as ONMI, Omega Index, F-score and Overlap modularity and the results are compared with its competent algorithms. It is observed that extended modularity gain can detect highly modular structures in complex networks with overlapping communities.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/idosi.ije.2017.30.04a.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one community at the same time, that leads to overlapping communities. A novel approach is proposed to detect such overlapping communities by extending the definition of newman’s modularity for overlapping communities. The proposed algorithm is tested on LFR benchmark networks with overlapping communities and on real-world networks. The performance of the algorithm is evaluated using popular metrics such as ONMI, Omega Index, F-score and Overlap modularity and the results are compared with its competent algorithms. It is observed that extended modularity gain can detect highly modular structures in complex networks with overlapping communities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展模块化增益的现实网络重叠社区挖掘
社区检测在研究社交网络的群体层次模式中起着至关重要的作用,有助于开发电影推荐、图书推荐、朋友推荐等推荐系统。大多数社区检测算法只能检测不相交的社区,但在实时场景中,一个节点可能同时是多个社区的成员,这就导致了社区的重叠。通过扩展重叠群体的newman模块化定义,提出了一种新的重叠群体检测方法。该算法在具有重叠社区的LFR基准网络和真实网络上进行了测试。采用ONMI、Omega指数、F-score和重叠模块化等常用指标对算法的性能进行了评价,并将评价结果与同类算法进行了比较。研究发现,扩展模块化增益可以在具有重叠社区的复杂网络中检测出高度模块化的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE) Composite Multi Wall Carbon Nano Tube Polydimethylsiloxane Membrane Bioreactor for Enhanced Bioethanol Production from Broomcorn Seeds Determining of Geotechnical Domain Based on Joint Density and Fault Orientation at Batu Hijau Mine,West Sumbawa-Indonesia (TECHNICAL NOTE) Bi-objective Build-to-order Supply Chain Problem with Customer Utility Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1