Spasmodic Dysphonia Detection Using Machine Learning Classifiers

Elmoundher Hadjaidji, M. C. A. Korba, K. Khelil
{"title":"Spasmodic Dysphonia Detection Using Machine Learning Classifiers","authors":"Elmoundher Hadjaidji, M. C. A. Korba, K. Khelil","doi":"10.1109/ICRAMI52622.2021.9585920","DOIUrl":null,"url":null,"abstract":"Spasmodic Dysphonia (SD) is a neurological problem that involves the laryngeal muscles to malfunction. It is characterized by inappropriate contraction of the laryngeal muscles during speech. To distinguish healthy and pathological human voices, we used a variety of machine learning classifiers to conduct a side-by-side comparison for the detection of this vocal problem. Three commonly used classifiers, namely, knearest neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT) were used in this study. Our study is based on the Saarbruecken Voice Database (SVD), a freely accessible German database that contains various samples, vowels, and sentences from normal and diseased voices. In this article, we solely used the sustained phonation of the vowel /a/ low pitch, and the DT algorithm yielded better classification accuracy of roughly 86.66 %.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spasmodic Dysphonia (SD) is a neurological problem that involves the laryngeal muscles to malfunction. It is characterized by inappropriate contraction of the laryngeal muscles during speech. To distinguish healthy and pathological human voices, we used a variety of machine learning classifiers to conduct a side-by-side comparison for the detection of this vocal problem. Three commonly used classifiers, namely, knearest neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT) were used in this study. Our study is based on the Saarbruecken Voice Database (SVD), a freely accessible German database that contains various samples, vowels, and sentences from normal and diseased voices. In this article, we solely used the sustained phonation of the vowel /a/ low pitch, and the DT algorithm yielded better classification accuracy of roughly 86.66 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习分类器检测痉挛性语音障碍
痉挛性发音障碍(SD)是一种涉及喉肌功能障碍的神经系统问题。它的特点是说话时喉部肌肉不适当的收缩。为了区分健康和病理的人类声音,我们使用了各种机器学习分类器来进行并排比较,以检测这个声音问题。本研究使用了三种常用的分类器,即最近邻(KNN)、支持向量机(SVM)和决策树(DT)。我们的研究基于Saarbruecken语音数据库(SVD),这是一个免费访问的德语数据库,包含来自正常和患病语音的各种样本,元音和句子。在本文中,我们仅使用元音/a/低音的持续发声,DT算法的分类准确率约为86.66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1