Bistable serially connected reverse-biased PIN diodes

Z. Glover, A. Siahmakoun
{"title":"Bistable serially connected reverse-biased PIN diodes","authors":"Z. Glover, A. Siahmakoun","doi":"10.1117/12.2568182","DOIUrl":null,"url":null,"abstract":"In Silicon photonics, there is an ever-growing need for optical switches capable of high-speed operation, needed for applications such as optical computing, microwave photonics, and LiDAR. One potential candidate for a highspeed optical switch consists of two PIN junctions connected in series, reverse-biased. When one PIN junction is fed with an oscillating optical input at some frequency and the other with a constant threshold input, the output displays bistable hysteresis, ideal for an optical binary switch. In this research, PSpice and MATLAB are used to develop mathematical models of the circuit and simulate the operation of the Symmetric PIN, or S-PIN switch at various frequencies. While the work done so far has been highly theoretical, measurements have been carried out on an optoelectronic prototype of the S-PIN in order to observe the basic operation of the device. Additionally, a model of the S-PIN developed in MATLAB agrees closely with simulations of the switch in PSpice. In the physical circuit, the presence of parasitic capacitance and inductance in the PIN junctions cause the shape of the output hysteresis to deteriorate as the running frequency is increased. Simulations show that if parasitic capacitance is minimized, the switch can operate in the GHz range. One method explored to mitigate this capacitance is impedance matching, which has shown to improve output bistability to some extent. Results from modeling indicate that the use of components with low capacitance has the most potential to allow the S-PIN to operate at higher frequencies competitive with modern electronic switches.","PeriodicalId":325839,"journal":{"name":"Optics and Photonics for Information Processing XIV","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Photonics for Information Processing XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2568182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Silicon photonics, there is an ever-growing need for optical switches capable of high-speed operation, needed for applications such as optical computing, microwave photonics, and LiDAR. One potential candidate for a highspeed optical switch consists of two PIN junctions connected in series, reverse-biased. When one PIN junction is fed with an oscillating optical input at some frequency and the other with a constant threshold input, the output displays bistable hysteresis, ideal for an optical binary switch. In this research, PSpice and MATLAB are used to develop mathematical models of the circuit and simulate the operation of the Symmetric PIN, or S-PIN switch at various frequencies. While the work done so far has been highly theoretical, measurements have been carried out on an optoelectronic prototype of the S-PIN in order to observe the basic operation of the device. Additionally, a model of the S-PIN developed in MATLAB agrees closely with simulations of the switch in PSpice. In the physical circuit, the presence of parasitic capacitance and inductance in the PIN junctions cause the shape of the output hysteresis to deteriorate as the running frequency is increased. Simulations show that if parasitic capacitance is minimized, the switch can operate in the GHz range. One method explored to mitigate this capacitance is impedance matching, which has shown to improve output bistability to some extent. Results from modeling indicate that the use of components with low capacitance has the most potential to allow the S-PIN to operate at higher frequencies competitive with modern electronic switches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双稳串联反偏PIN二极管
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bistable serially connected reverse-biased PIN diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1