Philipp Haller, Simon Geries, Michael Eichberg, G. Salvaneschi
{"title":"Reactive Async: expressive deterministic concurrency","authors":"Philipp Haller, Simon Geries, Michael Eichberg, G. Salvaneschi","doi":"10.1145/2998392.2998396","DOIUrl":null,"url":null,"abstract":"Concurrent programming is infamous for its difficulty. An important source of difficulty is non-determinism, stemming from unpredictable interleavings of concurrent activities. Futures and promises are widely-used abstractions that help designing deterministic concurrent programs, although this property cannot be guaranteed statically in mainstream programming languages. Deterministic-by-construction concurrent programming models avoid this issue, but they typically restrict expressiveness in important ways. This paper introduces a concurrent programming model, Reactive Async, which decouples concurrent computations using so-called cells, shared locations which generalize futures as well as recent deterministic abstractions such as LVars. Compared to previously proposed programming models Reactive Async provides (a) a fallback mechanism for the case where no computation ever computes the value of a given cell, and (b) explicit and optimized handling of cyclic dependencies. We present a complete implementation of the Reactive Async programming model as a library in Scala. Finally, the paper reports on a case study applying Reactive Async to static analyses of JVM bytecode based on the Opal framework.","PeriodicalId":269542,"journal":{"name":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2998392.2998396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Concurrent programming is infamous for its difficulty. An important source of difficulty is non-determinism, stemming from unpredictable interleavings of concurrent activities. Futures and promises are widely-used abstractions that help designing deterministic concurrent programs, although this property cannot be guaranteed statically in mainstream programming languages. Deterministic-by-construction concurrent programming models avoid this issue, but they typically restrict expressiveness in important ways. This paper introduces a concurrent programming model, Reactive Async, which decouples concurrent computations using so-called cells, shared locations which generalize futures as well as recent deterministic abstractions such as LVars. Compared to previously proposed programming models Reactive Async provides (a) a fallback mechanism for the case where no computation ever computes the value of a given cell, and (b) explicit and optimized handling of cyclic dependencies. We present a complete implementation of the Reactive Async programming model as a library in Scala. Finally, the paper reports on a case study applying Reactive Async to static analyses of JVM bytecode based on the Opal framework.