Improving the recognition of pathological voice using the discriminant HLDA transformation

O. Lachhab, J. D. Martino, E. I. Elhaj, A. Hammouch
{"title":"Improving the recognition of pathological voice using the discriminant HLDA transformation","authors":"O. Lachhab, J. D. Martino, E. I. Elhaj, A. Hammouch","doi":"10.1109/CIST.2014.7016648","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a simple and fast method for evaluating the pathological voice (esophageal) by applying the continuous speech recognition in a speaker dependent mode, on our own database of the pathological voice, we call FPSD (French Pathological Speech Database). The recognition system used is implemented using the HTK platform, based on HMM/GMM monophone models. The acoustic vectors are linearly transformed by the HLDA (Heteroscedastic Linear Discriminant Analysis) method to reduce their size in a smaller space with good discriminative properties. The obtained phone recognition rate (63.59 %) is very promising when we know that esophageal voice contains unnatural sounds, difficult to understand.","PeriodicalId":106483,"journal":{"name":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2014.7016648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a simple and fast method for evaluating the pathological voice (esophageal) by applying the continuous speech recognition in a speaker dependent mode, on our own database of the pathological voice, we call FPSD (French Pathological Speech Database). The recognition system used is implemented using the HTK platform, based on HMM/GMM monophone models. The acoustic vectors are linearly transformed by the HLDA (Heteroscedastic Linear Discriminant Analysis) method to reduce their size in a smaller space with good discriminative properties. The obtained phone recognition rate (63.59 %) is very promising when we know that esophageal voice contains unnatural sounds, difficult to understand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用判别性HLDA转化提高病理性语音的识别
本文在法国病理语音数据库FPSD (French pathological speech database)的基础上,提出了一种基于说话人依赖模式的连续语音识别方法,对病理语音(食道)进行简单快速的评估。所使用的识别系统是基于HMM/GMM单声道模型的HTK平台实现的。采用异方差线性判别分析(Heteroscedastic Linear Discriminant Analysis, hda)方法对声向量进行线性变换,使其在较小的空间内减小,具有良好的判别性。当我们知道食管语音中含有不自然的、难以理解的声音时,所获得的电话识别率(63.59%)是非常有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Getting the static model of PIM from the CIM Development of a web-based weather station for irrigation scheduling Interactive simulation as a virtual tool in electromagnetics for online education Towards a smart cloud gate for smart devices Enhancing Arabic WordNet with the use of Princeton WordNet and a bilingual dictionary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1