Spike Processing on an Embedded Multi-task Computer: Image Reconstruction

Carlos Daniel Luján-Martínez, A. Linares-Barranco, Manuel Rivas Pérez, A. Jiménez-Fernandez, G. Jiménez-Moreno, A. C. Balcells
{"title":"Spike Processing on an Embedded Multi-task Computer: Image Reconstruction","authors":"Carlos Daniel Luján-Martínez, A. Linares-Barranco, Manuel Rivas Pérez, A. Jiménez-Fernandez, G. Jiménez-Moreno, A. C. Balcells","doi":"10.1109/WISES.2007.4408507","DOIUrl":null,"url":null,"abstract":"There is an emerging philosophy, called Neuro-informatics, contained in the Artificial Intelligence field, that aims to emulate how living beings do tasks such as taking a decision based on the interpretation of an image by emulating spiking neurons into VLSI designs and, therefore, trying to re-create the human brain at its highest level. address-event-representation (AER) is a communication protocol that has embedded part of the processing. It is intended to transfer spikes between bioinspired chips. An AER based system may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. There are several AER tools to help to develop and test AER based systems. These tools require the use of a computer to allow the higher level processing of the event information, reaching very high bandwidth at the AER communication level. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment. This embedded platform is based on the Intel XScale processor which is governed by an embedded GNU/Linux system. We have connected and programmed it for processing Address-Event information from a spiking generato","PeriodicalId":319643,"journal":{"name":"2007 Fifth Workshop on Intelligent Solutions in Embedded Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Fifth Workshop on Intelligent Solutions in Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISES.2007.4408507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There is an emerging philosophy, called Neuro-informatics, contained in the Artificial Intelligence field, that aims to emulate how living beings do tasks such as taking a decision based on the interpretation of an image by emulating spiking neurons into VLSI designs and, therefore, trying to re-create the human brain at its highest level. address-event-representation (AER) is a communication protocol that has embedded part of the processing. It is intended to transfer spikes between bioinspired chips. An AER based system may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. There are several AER tools to help to develop and test AER based systems. These tools require the use of a computer to allow the higher level processing of the event information, reaching very high bandwidth at the AER communication level. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment. This embedded platform is based on the Intel XScale processor which is governed by an embedded GNU/Linux system. We have connected and programmed it for processing Address-Event information from a spiking generato
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入式多任务计算机上的脉冲处理:图像重建
人工智能领域有一种新兴的哲学,叫做神经信息学,它旨在通过将脉冲神经元模拟到VLSI设计中来模拟生物如何完成任务,例如根据对图像的解释做出决定,从而试图在最高水平上重建人类大脑。地址事件表示(AER)是一种嵌入了部分处理的通信协议。它的目的是在仿生芯片之间传输尖峰。基于AER的系统可能由多层芯片组成,这些芯片之间实时传输峰值,同时执行一些处理。有几个AER工具可以帮助开发和测试基于AER的系统。这些工具需要使用计算机来允许对事件信息进行更高级的处理,在AER通信级别达到非常高的带宽。我们建议使用基于多任务操作系统的嵌入式平台来实现AER通信和处理,而不需要笔记本电脑或计算机。在本文中,我们提出并研究了一种新的基于多任务环境的帧捕获AER工具的性能。该嵌入式平台基于Intel XScale处理器,该处理器由嵌入式GNU/Linux系统管理。我们已经连接并编程了它来处理来自脉冲发生器的地址事件信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Real-Time Systems Compiler Middleware for Dynamic Reconfiguration in Distributed Camera Systems OSGi Platform for UPnP Audiovisual Service Delivery Fixed Point Library Based on ISO/IEC Standard DTR 18037 for Atmel AVR Microcontrollers Deployment of Sensor Networks: Problems and Passive Inspection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1