{"title":"Pulsed-flow microchannel heat sink: Simulation and experimental validation","authors":"S. Singh, H. Mali, S. Suryawanshi, S. Singh","doi":"10.1177/25165984211058625","DOIUrl":null,"url":null,"abstract":"Microchannel heat dissipation devices were first conceptualized in 1981 and since then are at the forefront of cooling techniques for a variety of applications, extending from computer chips and turbine blades to lasers and optical systems. However, much of the research is concentrated on steady flow of a cooling fluid through the channels. In this article, transient two-dimensional (2D) simulation for heat transfer in microchannels under a pulsed-flow condition is carried out. For validation of simulation results, a novel heat sink device is designed and fabricated, using milling and micro-electric discharge machining (EDM) technique. The fabricated device is then tested to evaluate the effect of a variable flow rate on the heat transfer characteristics when the flow is pulsating. It is found that the numerical results underpredict slightly as compared to actual experimental results. Results indicate a higher temperature at the outlet of the heat sink device for lower pulse frequency, and as pulse frequency increases, the outlet temperature decreases.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984211058625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Microchannel heat dissipation devices were first conceptualized in 1981 and since then are at the forefront of cooling techniques for a variety of applications, extending from computer chips and turbine blades to lasers and optical systems. However, much of the research is concentrated on steady flow of a cooling fluid through the channels. In this article, transient two-dimensional (2D) simulation for heat transfer in microchannels under a pulsed-flow condition is carried out. For validation of simulation results, a novel heat sink device is designed and fabricated, using milling and micro-electric discharge machining (EDM) technique. The fabricated device is then tested to evaluate the effect of a variable flow rate on the heat transfer characteristics when the flow is pulsating. It is found that the numerical results underpredict slightly as compared to actual experimental results. Results indicate a higher temperature at the outlet of the heat sink device for lower pulse frequency, and as pulse frequency increases, the outlet temperature decreases.