Pulsed-flow microchannel heat sink: Simulation and experimental validation

S. Singh, H. Mali, S. Suryawanshi, S. Singh
{"title":"Pulsed-flow microchannel heat sink: Simulation and experimental validation","authors":"S. Singh, H. Mali, S. Suryawanshi, S. Singh","doi":"10.1177/25165984211058625","DOIUrl":null,"url":null,"abstract":"Microchannel heat dissipation devices were first conceptualized in 1981 and since then are at the forefront of cooling techniques for a variety of applications, extending from computer chips and turbine blades to lasers and optical systems. However, much of the research is concentrated on steady flow of a cooling fluid through the channels. In this article, transient two-dimensional (2D) simulation for heat transfer in microchannels under a pulsed-flow condition is carried out. For validation of simulation results, a novel heat sink device is designed and fabricated, using milling and micro-electric discharge machining (EDM) technique. The fabricated device is then tested to evaluate the effect of a variable flow rate on the heat transfer characteristics when the flow is pulsating. It is found that the numerical results underpredict slightly as compared to actual experimental results. Results indicate a higher temperature at the outlet of the heat sink device for lower pulse frequency, and as pulse frequency increases, the outlet temperature decreases.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984211058625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microchannel heat dissipation devices were first conceptualized in 1981 and since then are at the forefront of cooling techniques for a variety of applications, extending from computer chips and turbine blades to lasers and optical systems. However, much of the research is concentrated on steady flow of a cooling fluid through the channels. In this article, transient two-dimensional (2D) simulation for heat transfer in microchannels under a pulsed-flow condition is carried out. For validation of simulation results, a novel heat sink device is designed and fabricated, using milling and micro-electric discharge machining (EDM) technique. The fabricated device is then tested to evaluate the effect of a variable flow rate on the heat transfer characteristics when the flow is pulsating. It is found that the numerical results underpredict slightly as compared to actual experimental results. Results indicate a higher temperature at the outlet of the heat sink device for lower pulse frequency, and as pulse frequency increases, the outlet temperature decreases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲流微通道散热器:仿真与实验验证
微通道散热设备于1981年首次提出概念,从那时起,微通道散热设备就处于各种应用冷却技术的最前沿,从计算机芯片和涡轮叶片到激光和光学系统。然而,大部分研究都集中在冷却流体通过通道的稳定流动上。本文对脉冲流动条件下的微通道传热进行了二维瞬态模拟。为了验证仿真结果,采用铣削和微细电火花加工(EDM)技术,设计并制作了一种新型散热装置。然后对该装置进行测试,以评估在流动脉动时变流量对传热特性的影响。结果表明,数值计算结果与实际实验结果有一定的偏差。结果表明:脉冲频率越低,散热装置出口温度越高;脉冲频率越高,出口温度越低;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive manufacturing in the COVID-19 pandemic: Equipment and challenges? Strain softening observed during nanoindentation of equimolar-ratio Co–Mn– Fe–Cr–Ni high entropy alloy Surface modification using nanostructures and nanocoating to combat the spread of bacteria and viruses: Recent development
and challenges A review on applications of molecular dynamics in additive manufacturing A review on applications of molecular dynamics in additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1