Electrocardiogram beat classification using classifier fusion based on Decision Templates

Atena Sajedin, R. Ebrahimpour, Tahmoures Younesi Garousi
{"title":"Electrocardiogram beat classification using classifier fusion based on Decision Templates","authors":"Atena Sajedin, R. Ebrahimpour, Tahmoures Younesi Garousi","doi":"10.1109/CIS.2011.6169127","DOIUrl":null,"url":null,"abstract":"This paper presents a ”Decision Templates” (DTs) approach to develop customized Electrocardiogram (ECG) beat classifier in an effort to further improve the performance of ECG classification. Taking advantage of the Un-decimated Wavelet Transform (UWT), which also serves as a tool for noise reduction, we extracted 10 ECG morphological, as well as one timing interval features. For classification we have used a number of diverse MLPs neural networks as the base classifiers that are trained by Back Propagation algorithm. Then we employed and compared different combination methods. Tested with MIT/BIH arrhythmia database, we observe significant performance enhancement using this approach.","PeriodicalId":286889,"journal":{"name":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2011.6169127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a ”Decision Templates” (DTs) approach to develop customized Electrocardiogram (ECG) beat classifier in an effort to further improve the performance of ECG classification. Taking advantage of the Un-decimated Wavelet Transform (UWT), which also serves as a tool for noise reduction, we extracted 10 ECG morphological, as well as one timing interval features. For classification we have used a number of diverse MLPs neural networks as the base classifiers that are trained by Back Propagation algorithm. Then we employed and compared different combination methods. Tested with MIT/BIH arrhythmia database, we observe significant performance enhancement using this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于决策模板的分类器融合心电脉搏分类
为了进一步提高心电分类的性能,本文提出了一种“决策模板”(Decision Templates, DTs)方法来开发定制的心电(ECG)心跳分类器。利用非抽取小波变换(UWT)作为降噪工具,我们提取了10个ECG形态学特征和1个定时间隔特征。对于分类,我们使用了许多不同的mlp神经网络作为基础分类器,这些分类器是通过反向传播算法训练的。然后采用并比较了不同的组合方法。通过MIT/BIH心律失常数据库的测试,我们观察到使用这种方法可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Particle Swarm Optimization with parameter selection approaches to solve Flow Shop Scheduling Problem A software system for data mining with twitter Measuring security requirements for software security A novel technique for object oriented relational database design Electrocardiogram beat classification using classifier fusion based on Decision Templates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1