A Novel MMSE Based Predictive Method for Narrow Band Interference Removal

Neeraj Varshney, R. C. Jain
{"title":"A Novel MMSE Based Predictive Method for Narrow Band Interference Removal","authors":"Neeraj Varshney, R. C. Jain","doi":"10.1109/NBiS.2013.34","DOIUrl":null,"url":null,"abstract":"A new system model based on state space representation of the received signal for Narrow-band interference suppression in Direct Sequence-Spread Spectrum (DS-SS) system is given. This model recursively estimates the interfering signal in the presence of desired information and white Gaussian noise. To further improve the performance, we employ MMSE criteria to estimate the transmitted symbols. The MMSE estimate requires low computational complexity than Code-aided techniques. Our simulation results demonstrate that this technique provides better SINR improvement over to Nonlinear predictor, Linear predictor, Kalman-Bucy predictor for-65 dB to-5 dB input SINR and up to 10 dB AWGN power. For high interfering signal and noise power, our results clearly show that our SINR improvement performance exceeds the SINR improvement upper-bound calculated for the prediction based techniques. Besides reducing the effect of interfering signal, our technique also reduces AWGN noise. Our model also provides better BER performance than Nonlinear predictor.","PeriodicalId":261268,"journal":{"name":"2013 16th International Conference on Network-Based Information Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 16th International Conference on Network-Based Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NBiS.2013.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new system model based on state space representation of the received signal for Narrow-band interference suppression in Direct Sequence-Spread Spectrum (DS-SS) system is given. This model recursively estimates the interfering signal in the presence of desired information and white Gaussian noise. To further improve the performance, we employ MMSE criteria to estimate the transmitted symbols. The MMSE estimate requires low computational complexity than Code-aided techniques. Our simulation results demonstrate that this technique provides better SINR improvement over to Nonlinear predictor, Linear predictor, Kalman-Bucy predictor for-65 dB to-5 dB input SINR and up to 10 dB AWGN power. For high interfering signal and noise power, our results clearly show that our SINR improvement performance exceeds the SINR improvement upper-bound calculated for the prediction based techniques. Besides reducing the effect of interfering signal, our technique also reduces AWGN noise. Our model also provides better BER performance than Nonlinear predictor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于MMSE的窄带干扰去除预测方法
针对直接序列扩频(DS-SS)系统中窄带干扰抑制问题,提出了一种基于接收信号状态空间表示的系统模型。该模型对存在期望信息和高斯白噪声的干扰信号进行递归估计。为了进一步提高性能,我们采用MMSE准则来估计传输的符号。与代码辅助技术相比,MMSE估计所需的计算复杂度较低。我们的仿真结果表明,对于65 dB至5 dB的输入SINR和高达10 dB的AWGN功率,该技术提供了比非线性预测器、线性预测器、Kalman-Bucy预测器更好的SINR改进。对于高干扰信号和噪声功率,我们的结果清楚地表明,我们的SINR改进性能超过了基于预测的技术计算的SINR改进上限。该技术在降低干扰信号影响的同时,还降低了AWGN噪声。该模型的误码率也优于非线性预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3 Tiers Storage Model for Low Throughput Off-Line Storage Implementation of Web-Based Interactive Interface as Software Execution Environment A Novel Resource Allocation Heuristic for a Power Constrained Data Center A Clustering Algorithm Using Twitter User Biography Querying MongoDB with LINQ in a Server-Side JavaScript Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1