Biotable: A Tool to Extract Semantic Structure of Table in Biology Literature

Daipeng Luo, Jing Peng, Yuhua Fu
{"title":"Biotable: A Tool to Extract Semantic Structure of Table in Biology Literature","authors":"Daipeng Luo, Jing Peng, Yuhua Fu","doi":"10.1145/3309129.3309139","DOIUrl":null,"url":null,"abstract":"The publication of biological literature increasing year by year. And the important information in biomedical articles may only appear in tables. However, research on information extraction from tables is rare. Nowadays, there are two ways to do table mining. The first way is that researchers convert the document to HTML format, but the performance of conversion is terrible. The second way is that researchers use documents in XML format directly, but the number of XML documents are limited. To solve this problem, we propose Biotable, a tool for mining biological tables in PDF documents. We use the concept of Connected Value to locate the table boundary and locate each cell after converting each page of the PDF into a picture. In the analysis of the table header field, we convert all the heterogeneous table headers into one row. Then we will have better understanding of the semantics of each column. Based on Biotable and the pipeline QTLMiners proposed, we performed a table mining experiment on QTLMiner's dataset. The precision value of the table detection is 98.12% and the recall value of table detection is 93.14%. The recall value of QTL statements is 86.53%.","PeriodicalId":326530,"journal":{"name":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3309129.3309139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The publication of biological literature increasing year by year. And the important information in biomedical articles may only appear in tables. However, research on information extraction from tables is rare. Nowadays, there are two ways to do table mining. The first way is that researchers convert the document to HTML format, but the performance of conversion is terrible. The second way is that researchers use documents in XML format directly, but the number of XML documents are limited. To solve this problem, we propose Biotable, a tool for mining biological tables in PDF documents. We use the concept of Connected Value to locate the table boundary and locate each cell after converting each page of the PDF into a picture. In the analysis of the table header field, we convert all the heterogeneous table headers into one row. Then we will have better understanding of the semantics of each column. Based on Biotable and the pipeline QTLMiners proposed, we performed a table mining experiment on QTLMiner's dataset. The precision value of the table detection is 98.12% and the recall value of table detection is 93.14%. The recall value of QTL statements is 86.53%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物表:生物学文献中表语义结构的提取工具
生物文献的发表量逐年增加。生物医学文章中的重要信息可能只出现在表格中。然而,从表格中提取信息的研究很少。目前,有两种方法可以进行表挖掘。第一种方法是研究人员将文档转换为HTML格式,但是转换的性能很差。第二种方法是研究人员直接使用XML格式的文档,但是XML文档的数量有限。为了解决这一问题,我们提出了一个挖掘PDF文档中生物表的工具Biotable。我们使用Connected Value的概念来定位表边界,并在将PDF的每个页面转换为图片后定位每个单元格。在分析表头字段时,我们将所有异构表头转换为一行。这样我们就能更好地理解每一列的语义。基于Biotable和QTLMiner提出的流水线,我们对QTLMiner的数据集进行了表挖掘实验。表检测的准确率为98.12%,召回率为93.14%。QTL语句的召回值为86.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 5th International Conference on Bioinformatics Research and Applications A Study on Optimizing MarkDuplicate in Genome Sequencing Pipeline Biotable: A Tool to Extract Semantic Structure of Table in Biology Literature Screening Feasibility and Comparison of Deep Artificial Neural Networks Algorithms for Classification of Skin Lesions Identification of Viable Embryos Using Deep Learning for Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1