LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION USING KRONECKER PRODUCT EQUATIONS

Martijn Boussé, L. D. Lathauwer
{"title":"LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION USING KRONECKER PRODUCT EQUATIONS","authors":"Martijn Boussé, L. D. Lathauwer","doi":"10.1109/GlobalSIP.2018.8646598","DOIUrl":null,"url":null,"abstract":"By exploiting the intrinsic structure and/or sparsity of the system coefficients in large-scale system identification, one can enable efficient processing. In this paper, we employ this strategy for large-scale single-input multiple-output autoregressive system identification by assuming the coefficients can be well approximated by Kronecker products of smaller vectors. We show that the identification problem can be refor-mulated as the computation of a Kronecker product equation, allowing one to use optimization-based and algebraic solvers.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

By exploiting the intrinsic structure and/or sparsity of the system coefficients in large-scale system identification, one can enable efficient processing. In this paper, we employ this strategy for large-scale single-input multiple-output autoregressive system identification by assuming the coefficients can be well approximated by Kronecker products of smaller vectors. We show that the identification problem can be refor-mulated as the computation of a Kronecker product equation, allowing one to use optimization-based and algebraic solvers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于kronecker积方程的大规模自回归系统辨识
通过利用大规模系统识别中系统系数的固有结构和/或稀疏性,可以实现有效的处理。在本文中,我们通过假设系数可以很好地近似于较小向量的Kronecker积,将该策略用于大规模单输入多输出自回归系统辨识。我们表明,识别问题可以重新表述为一个克罗内克积方程的计算,允许使用基于优化和代数求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1