Patricia Gonzalez-Guerrero, Kylie Huch, N. Patra, Thom Popovici, George Michelogiannakis
{"title":"An Area Efficient Superconducting Unary CNN Accelerator","authors":"Patricia Gonzalez-Guerrero, Kylie Huch, N. Patra, Thom Popovici, George Michelogiannakis","doi":"10.1109/ISQED57927.2023.10129299","DOIUrl":null,"url":null,"abstract":"In superconducting circuits, information is carried by ps-wide, µV-tall, Single Flux Quanta (SFQ) pulses. These circuits can operate at frequencies of hundreds of GHz with orders of magnitude lower switching energy than complementary-metal-oxide-semiconductors (CMOS). However, under the stringent area constraints of modern superconductor technologies, fully-fledged, CMOS-inspired superconducting architectures cannot be fabricated at large scales. Unary SFQ (U-SFQ) is an alternative computing paradigm that addresses these area constraints. In U-SFQ, information is mapped to a combination of streams of SFQ pulses and in the temporal domain. In this work, we propose a U-SFQ Convolutional Neural Network (CNN) hardware accelerator capable of comparable peak performance with state-of-the-art superconducting binary (B-SFQ) approaches in 32× less area. CNNs can operate with 5 to 8 bits of resolution with no significant degradation in classification accuracy. The proposed CNN accelerator effortlessly supports this variable resolution and, for less than 7 bits, yields 5×-63× better performance than CMOS and 15×-173× better area efficiency than B-SFQ.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In superconducting circuits, information is carried by ps-wide, µV-tall, Single Flux Quanta (SFQ) pulses. These circuits can operate at frequencies of hundreds of GHz with orders of magnitude lower switching energy than complementary-metal-oxide-semiconductors (CMOS). However, under the stringent area constraints of modern superconductor technologies, fully-fledged, CMOS-inspired superconducting architectures cannot be fabricated at large scales. Unary SFQ (U-SFQ) is an alternative computing paradigm that addresses these area constraints. In U-SFQ, information is mapped to a combination of streams of SFQ pulses and in the temporal domain. In this work, we propose a U-SFQ Convolutional Neural Network (CNN) hardware accelerator capable of comparable peak performance with state-of-the-art superconducting binary (B-SFQ) approaches in 32× less area. CNNs can operate with 5 to 8 bits of resolution with no significant degradation in classification accuracy. The proposed CNN accelerator effortlessly supports this variable resolution and, for less than 7 bits, yields 5×-63× better performance than CMOS and 15×-173× better area efficiency than B-SFQ.