An ART2-BP neural net and its application to reservoir engineering

Wu-Yuan Tsai, H. Tai, A. Reynolds
{"title":"An ART2-BP neural net and its application to reservoir engineering","authors":"Wu-Yuan Tsai, H. Tai, A. Reynolds","doi":"10.1109/ICNN.1994.374763","DOIUrl":null,"url":null,"abstract":"Backpropagation feedforward neural networks have been applied to pattern recognition and classification problems. However, under certain conditions the backpropagation net classifier can produce nonintuitive, nonrobust and unreliable classification results. The backpropagation net is slower to train and is not easy to accommodate new data. To solve the difficulties mentioned above, an unsupervised/supervised type neural net, namely, ART-BP net, is proposed. The idea is to use a low vigilance parameter in ART2 net to categorize input patterns into some classes and then utilize a backpropagation net to recognize patterns in each class. Advantages of the ART2-BP neural net include (1) improvement of recognition capability, (2) training convergence enhancement, and (3) easy to add new data. Theoretical analysis along with a well testing model recognition example are given to illustrate these advantages.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Backpropagation feedforward neural networks have been applied to pattern recognition and classification problems. However, under certain conditions the backpropagation net classifier can produce nonintuitive, nonrobust and unreliable classification results. The backpropagation net is slower to train and is not easy to accommodate new data. To solve the difficulties mentioned above, an unsupervised/supervised type neural net, namely, ART-BP net, is proposed. The idea is to use a low vigilance parameter in ART2 net to categorize input patterns into some classes and then utilize a backpropagation net to recognize patterns in each class. Advantages of the ART2-BP neural net include (1) improvement of recognition capability, (2) training convergence enhancement, and (3) easy to add new data. Theoretical analysis along with a well testing model recognition example are given to illustrate these advantages.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ART2-BP神经网络及其在油藏工程中的应用
反向传播前馈神经网络已应用于模式识别和分类问题。然而,在一定条件下,反向传播网络分类器会产生非直观、非鲁棒和不可靠的分类结果。反向传播网络的训练速度较慢,而且不容易容纳新数据。为了解决上述困难,提出了一种无监督/监督型神经网络,即ART-BP网络。其思想是在ART2网络中使用低警惕性参数将输入模式分类为一些类别,然后利用反向传播网络识别每个类别中的模式。ART2-BP神经网络的优点包括:(1)识别能力提高;(2)训练收敛性增强;(3)易于添加新数据。理论分析和一个试井模型识别实例说明了这些优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1