MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective optimization

H. Nobahari, Ariyan Bighashdel
{"title":"MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective optimization","authors":"H. Nobahari, Ariyan Bighashdel","doi":"10.1109/CSIEC.2017.7940171","DOIUrl":null,"url":null,"abstract":"In this paper, an extension of the recently developed Crow Search Algorithm (CSA) to multi-objective optimization problems is presented. The proposed algorithm, called Multi-Objective Crow Search Algorithm (MOCSA), defines the fitness function using a set of determined weight vectors, employing the max-min strategy. In order to improve the efficiency of the search space, the performance space is regionalized using specific control points. A new chasing operator is also employed in order to improve the convergence process. Numerical results show that MOCSA is closely comparable to well-known multi-objective algorithms.","PeriodicalId":166046,"journal":{"name":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIEC.2017.7940171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, an extension of the recently developed Crow Search Algorithm (CSA) to multi-objective optimization problems is presented. The proposed algorithm, called Multi-Objective Crow Search Algorithm (MOCSA), defines the fitness function using a set of determined weight vectors, employing the max-min strategy. In order to improve the efficiency of the search space, the performance space is regionalized using specific control points. A new chasing operator is also employed in order to improve the convergence process. Numerical results show that MOCSA is closely comparable to well-known multi-objective algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向多目标优化的多目标乌鸦搜索算法
本文将最近发展起来的乌鸦搜索算法(CSA)推广到多目标优化问题。该算法被称为多目标乌鸦搜索算法(MOCSA),使用一组确定的权重向量来定义适应度函数,采用最大最小策略。为了提高搜索空间的效率,使用特定的控制点对性能空间进行分区。为了提高收敛速度,还引入了一种新的跟踪算子。数值结果表明,该算法与多目标算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-based multi-class motor imagery classification using variable sized filter bank and enhanced One Versus One classifier MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective optimization A genetic approach in procedural content generation for platformer games level creation Using Recurrence quantification analysis and Generalized Hurst Exponents of ECG for human authentication Improved particle swarm optimization through orthogonal experimental design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1