Static detection of asymptotic resource side-channel vulnerabilities in web applications

Jia Chen, Oswaldo Olivo, Işıl Dillig, Calvin Lin
{"title":"Static detection of asymptotic resource side-channel vulnerabilities in web applications","authors":"Jia Chen, Oswaldo Olivo, Işıl Dillig, Calvin Lin","doi":"10.1109/ASE.2017.8115636","DOIUrl":null,"url":null,"abstract":"Web applications can leak confidential user information due to the presence of unintended side-channel vulnerabilities in code. One particularly subtle class of side-channel vulnerabilities arises due to resource usage imbalances along different execution paths of a program. Such side-channel vulnerabilities are especially severe if the resource usage imbalance is asymptotic. This paper formalizes the notion of asymptotic resource side-channels and presents a lightweight static analysis algorithm for automatically detecting them. Based on these ideas, we have developed a tool called SCANNER that detects resource-related side-channel vulnerabilities in PHP applications. SCANNER has found 18 zero-day security vulnerabilities in 10 different web applications and reports only 2 false positives. The vulnerabilities uncovered by SCANNER can be exploited using cross-site search attacks to extract various kinds of confidential information, such as a user's medications or purchase history.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Web applications can leak confidential user information due to the presence of unintended side-channel vulnerabilities in code. One particularly subtle class of side-channel vulnerabilities arises due to resource usage imbalances along different execution paths of a program. Such side-channel vulnerabilities are especially severe if the resource usage imbalance is asymptotic. This paper formalizes the notion of asymptotic resource side-channels and presents a lightweight static analysis algorithm for automatically detecting them. Based on these ideas, we have developed a tool called SCANNER that detects resource-related side-channel vulnerabilities in PHP applications. SCANNER has found 18 zero-day security vulnerabilities in 10 different web applications and reports only 2 false positives. The vulnerabilities uncovered by SCANNER can be exploited using cross-site search attacks to extract various kinds of confidential information, such as a user's medications or purchase history.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
web应用中渐近资源侧通道漏洞的静态检测
由于代码中存在意外的侧通道漏洞,Web应用程序可能会泄露机密用户信息。由于程序的不同执行路径上的资源使用不平衡,产生了一类特别微妙的侧通道漏洞。如果资源使用不平衡是渐近的,这种侧信道漏洞尤其严重。本文形式化了渐近资源侧信道的概念,提出了一种自动检测渐近资源侧信道的轻量级静态分析算法。基于这些想法,我们开发了一个名为SCANNER的工具,用于检测PHP应用程序中与资源相关的侧通道漏洞。SCANNER在10个不同的web应用程序中发现了18个零日安全漏洞,仅报告了2个误报。可以利用跨站点搜索攻击利用SCANNER发现的漏洞来提取各种机密信息,例如用户的药物或购买历史记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1