Litedge

Yutong Liu, L. Kong, Muhammad Hassan, Long Cheng, Guangtao Xue, Guihai Chen
{"title":"Litedge","authors":"Yutong Liu, L. Kong, Muhammad Hassan, Long Cheng, Guangtao Xue, Guihai Chen","doi":"10.1145/3326285.3329066","DOIUrl":null,"url":null,"abstract":"Wireless surveillance systems are rapidly gaining popularity due to their easier deployability and improved performance. However, cameras inside are generating a large amount of data, which brings challenges to the transmission through resource-constrained wireless networks. Observing that most collected consecutive frames are redundant with few objects of interest (OoIs), the filtering of these frames can dramatically relieve the transmission pressure. Additionally, real-world environment may bring shielding or blind areas in videos, which notoriously affects the accuracy of frame analysis. The collaboration between cameras facing at different angles can compensate for such accuracy loss. In this work, we present Litedge, a light-weight edge computing strategy to improve the QoS (i. e., the latency and accuracy) of wireless surveillance systems. Two main modules are designed on edge cameras: (i) the light-weight video compression module for frame filtering, mainly realized by model compression and convolutional acceleration; and (ii) the collaborative validation module for error compensation between the master-slave camera pair. We also implement an enhanced surveillance system prototype from real-time monitoring and pre-processing on edge cameras to the backend data analysis on a server. Experiments based on real-world collected videos show the efficiency of Litedge. It achieves 82% transmission latency reduction with a maximal 0.119s additional processing delay, compared with the full video transmission. Remarkably, 91.28% of redundant frames are successfully filtered out, greatly reducing the transmission burden. Litedge outperforms state-of-the-art light-weight AI models and video compression methods by balancing the QoS balance ratio between accuracy and latency.","PeriodicalId":269719,"journal":{"name":"Proceedings of the International Symposium on Quality of Service","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326285.3329066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wireless surveillance systems are rapidly gaining popularity due to their easier deployability and improved performance. However, cameras inside are generating a large amount of data, which brings challenges to the transmission through resource-constrained wireless networks. Observing that most collected consecutive frames are redundant with few objects of interest (OoIs), the filtering of these frames can dramatically relieve the transmission pressure. Additionally, real-world environment may bring shielding or blind areas in videos, which notoriously affects the accuracy of frame analysis. The collaboration between cameras facing at different angles can compensate for such accuracy loss. In this work, we present Litedge, a light-weight edge computing strategy to improve the QoS (i. e., the latency and accuracy) of wireless surveillance systems. Two main modules are designed on edge cameras: (i) the light-weight video compression module for frame filtering, mainly realized by model compression and convolutional acceleration; and (ii) the collaborative validation module for error compensation between the master-slave camera pair. We also implement an enhanced surveillance system prototype from real-time monitoring and pre-processing on edge cameras to the backend data analysis on a server. Experiments based on real-world collected videos show the efficiency of Litedge. It achieves 82% transmission latency reduction with a maximal 0.119s additional processing delay, compared with the full video transmission. Remarkably, 91.28% of redundant frames are successfully filtered out, greatly reducing the transmission burden. Litedge outperforms state-of-the-art light-weight AI models and video compression methods by balancing the QoS balance ratio between accuracy and latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DaRTree Chic RetroFlow LEAP FAST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1