{"title":"Effect of RF sputtered arc-TiO2 and sol-gel c-TiO2 compact layers on the performance of dye-sensitized solar cell","authors":"M. H. Abdullah, I. Saurdi, M. Rusop","doi":"10.1109/RSM.2013.6706498","DOIUrl":null,"url":null,"abstract":"A novel gradient index antireflective TiO2 compact layer (arc-TiO2) that can improve transmittance and prevent charge recombination has been developed for dye-sensitized solar cells by radio frequency magnetron sputtering. Effects of the presence of arc-TiO2 compact layer to the performance improvement of a DSSC were compared to that of a sol-gel derived compact layer (c-TiO2) by means of incident photon-to-current efficiency (IPCE) and open-circuit voltage decay (OCVD). The higher and right-shifted transmittance spectra in the arc-TiO2 based electrode have improved the sensitization effect of the DSSC in a specific region as shown by IPCE measurement. The slow decay behavior of the photo-voltage attributed to the merits brought by the arc-TiO2 and c-TiO2 compact layer has been evidenced by the OCVD measurement. An improvement in the overall conversion efficiency of 7% increment compared to the cell with c-TiO2 compact layer is mainly responsible for the higher transmittance and fewer recombination effects of the arc-TiO2 compact layer employed in the DSSC.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A novel gradient index antireflective TiO2 compact layer (arc-TiO2) that can improve transmittance and prevent charge recombination has been developed for dye-sensitized solar cells by radio frequency magnetron sputtering. Effects of the presence of arc-TiO2 compact layer to the performance improvement of a DSSC were compared to that of a sol-gel derived compact layer (c-TiO2) by means of incident photon-to-current efficiency (IPCE) and open-circuit voltage decay (OCVD). The higher and right-shifted transmittance spectra in the arc-TiO2 based electrode have improved the sensitization effect of the DSSC in a specific region as shown by IPCE measurement. The slow decay behavior of the photo-voltage attributed to the merits brought by the arc-TiO2 and c-TiO2 compact layer has been evidenced by the OCVD measurement. An improvement in the overall conversion efficiency of 7% increment compared to the cell with c-TiO2 compact layer is mainly responsible for the higher transmittance and fewer recombination effects of the arc-TiO2 compact layer employed in the DSSC.