Modeling solar desalination with reverse osmosis (RO) powered by concentrating solar power (CSP) plan

A. Remlaoui, B. Soumia
{"title":"Modeling solar desalination with reverse osmosis (RO) powered by concentrating solar power (CSP) plan","authors":"A. Remlaoui, B. Soumia","doi":"10.47238/IJECA.V4I2.104","DOIUrl":null,"url":null,"abstract":"This article deals with the desalination of seawater and brackish water, which can deal with the problem of water scarcity that threatens certain countries in the world; it is now possible to meet the demand for drinking water.  Currently,  among  the  various  desalination  processes,  the  reverse  osmosis  technique  is  the  most  used. Electrical energy consumption is the most attractive factor in the cost of operating seawater by reverse osmosis in desalination plants.  Desalination  of  water by  solar  energy  can be  considered  as a  very  important  drinking  water alternative.  For  determining  the  electrical  energy  consumption  of  a  single  reverse  osmosis  module,  we  used  the  System  Advisor  Model  (SAM)  to  determine  the  technical  characteristics  and  costs  of  a  parabolic  cylindrical installation and Reverse Osmosis System Analysis (ROSA) to obtain the electrical power of a single reverse osmosis module. The electrical power of a single module is 4101 KW; this is consistent with the manufacturer's data that this power must be between 3900 kW and 4300 KW. Thus, the energy consumption of the system is 4.92 KWh/m3.Thermal power produced by the solar cylindro-parabolic field during the month of May has the maximum that is 208MWth, and the minimum value during the month of April, which equals 6 MWth. Electrical power produced by the plant varied between 47MWe, and 23.8MWe. The maximum energy was generated during the month of July (1900 MWh) with the maximum energy stored (118 MWh).","PeriodicalId":102946,"journal":{"name":"International Journal of Energetica","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47238/IJECA.V4I2.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article deals with the desalination of seawater and brackish water, which can deal with the problem of water scarcity that threatens certain countries in the world; it is now possible to meet the demand for drinking water.  Currently,  among  the  various  desalination  processes,  the  reverse  osmosis  technique  is  the  most  used. Electrical energy consumption is the most attractive factor in the cost of operating seawater by reverse osmosis in desalination plants.  Desalination  of  water by  solar  energy  can be  considered  as a  very  important  drinking  water alternative.  For  determining  the  electrical  energy  consumption  of  a  single  reverse  osmosis  module,  we  used  the  System  Advisor  Model  (SAM)  to  determine  the  technical  characteristics  and  costs  of  a  parabolic  cylindrical installation and Reverse Osmosis System Analysis (ROSA) to obtain the electrical power of a single reverse osmosis module. The electrical power of a single module is 4101 KW; this is consistent with the manufacturer's data that this power must be between 3900 kW and 4300 KW. Thus, the energy consumption of the system is 4.92 KWh/m3.Thermal power produced by the solar cylindro-parabolic field during the month of May has the maximum that is 208MWth, and the minimum value during the month of April, which equals 6 MWth. Electrical power produced by the plant varied between 47MWe, and 23.8MWe. The maximum energy was generated during the month of July (1900 MWh) with the maximum energy stored (118 MWh).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚光太阳能发电(CSP)方案的反渗透(RO)太阳能脱盐模型
本文讨论了海水和咸淡水的淡化,它可以解决威胁世界上某些国家的水资源短缺问题;现在有可能满足饮用水的需求。目前,在各种脱盐工艺中,反渗透技术是应用最多的。在海水淡化厂采用反渗透操作海水的成本中,电能消耗是最具吸引力的因素。太阳能海水淡化是一种非常重要的饮用水替代技术。为了确定单个反渗透模块的电能消耗,我们使用系统顾问模型(SAM)来确定抛物面圆柱形安装的技术特性和成本,并使用反渗透系统分析(ROSA)来获得单个反渗透模块的电功率。单模块功率为4101 KW;这与厂家要求该功率应在3900 kW ~ 4300 kW之间的数据一致,因此系统能耗为4.92 KWh/m3。太阳能柱面抛物场在5月份产生的热功率最大,为208MWth, 4月份最小,为6 MWth。该发电厂产生的电力在47MWe和23.8MWe之间变化。7月份发电量最大(1900 MWh),蓄能最大(118 MWh)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling solar desalination with reverse osmosis (RO) powered by concentrating solar power (CSP) plan Comparative study between pi and fuzzy pi controllers for DFIG integrated in variable speed wind turbine Study of photovoltaic systems with differences connecting configuration topologies for applications in renewable energy systems Fuzzy Logic Based Robust DVC Design of PWM Rectifier Connected to a PMSG WECS under wind/load Disturbance Conditions Elastic, mechanical and thermodynamic properties of zinc blende III-X (X= As, Sb): ab-initio calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1