High-performance complex event processing framework to detect event patterns over video streams

Piyush Yadav
{"title":"High-performance complex event processing framework to detect event patterns over video streams","authors":"Piyush Yadav","doi":"10.1145/3366624.3368169","DOIUrl":null,"url":null,"abstract":"Complex Event Processing (CEP) is an event processing paradigm capable of detecting patterns over streaming data in real-time. Presently, CEP systems have key challenges to preform matching over video streams due to their unstructured data model and complex video patterns which occurs over time and space. In this paper, I introduce the design, implementation and optimization of the proposed CEP framework, which enables the pattern detection over video streams. The work first proposes a Video Event Query Language (VEQL) motivated from current event query languages to write expressive video queries in CEP scenario. The query discusses how to write event query rules for video patterns and encapsulate them as high-level operators. To perform matching over VEQL queries, Video Event Knowledge Graph (VEKG) is proposed, which is a graph-based structured model of video streams. A complex event matcher is then presented which enable spatiotemporal pattern matching over videos using VEQL and VEKG constructs. Finally, three optimization strategies: state summarization, data-driven windows, and tuning deep model cascades are discussed to improve the CEP system performance which I intend to follow in my ongoing PhD research.","PeriodicalId":376496,"journal":{"name":"Proceedings of the 20th International Middleware Conference Doctoral Symposium","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Middleware Conference Doctoral Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366624.3368169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Complex Event Processing (CEP) is an event processing paradigm capable of detecting patterns over streaming data in real-time. Presently, CEP systems have key challenges to preform matching over video streams due to their unstructured data model and complex video patterns which occurs over time and space. In this paper, I introduce the design, implementation and optimization of the proposed CEP framework, which enables the pattern detection over video streams. The work first proposes a Video Event Query Language (VEQL) motivated from current event query languages to write expressive video queries in CEP scenario. The query discusses how to write event query rules for video patterns and encapsulate them as high-level operators. To perform matching over VEQL queries, Video Event Knowledge Graph (VEKG) is proposed, which is a graph-based structured model of video streams. A complex event matcher is then presented which enable spatiotemporal pattern matching over videos using VEQL and VEKG constructs. Finally, three optimization strategies: state summarization, data-driven windows, and tuning deep model cascades are discussed to improve the CEP system performance which I intend to follow in my ongoing PhD research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测视频流上的事件模式的高性能复杂事件处理框架
复杂事件处理(CEP)是一种事件处理范例,能够实时检测流数据上的模式。目前,由于CEP系统的非结构化数据模型和随时间和空间变化的复杂视频模式,CEP系统在视频流上进行匹配方面面临着关键挑战。本文介绍了CEP框架的设计、实现和优化,实现了对视频流的模式检测。本文首先提出了一种基于当前事件查询语言的视频事件查询语言(VEQL),用于在CEP场景中编写表达性视频查询。该查询讨论了如何为视频模式编写事件查询规则,并将其封装为高级操作符。为了对VEQL查询进行匹配,提出了视频事件知识图(VEKG),它是一种基于图的视频流结构化模型。然后提出了一个复杂的事件匹配器,它可以使用VEQL和VEKG结构实现视频的时空模式匹配。最后,讨论了三种优化策略:状态汇总、数据驱动窗口和调优深度模型级联,以提高CEP系统的性能,这是我打算在我正在进行的博士研究中遵循的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic resource management algorithms for edge computing using hardware accelerators High-performance complex event processing framework to detect event patterns over video streams Troubleshooting distributed data analytics systems Self-organizing middleware for cyber-physical networks Efficient storage support for unikernels as containers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1