Handwritten digits recognition using multiple instance learning

Hanning Yuan, Peng Wang
{"title":"Handwritten digits recognition using multiple instance learning","authors":"Hanning Yuan, Peng Wang","doi":"10.1109/GrC.2013.6740445","DOIUrl":null,"url":null,"abstract":"Now more and more heterogeneous handwritten digits data sets appear into sight. But traditional handwritten digits recognition algorithms are usually based on the homomorphism data sets. For solving the problem that handwritten digits data sets of different feature spaces can't compute, we constructed heterogeneous handwritten digits representation model based on multiple instance learning (MIL) where a bag contains handwritten digits data from different feature spaces. Handwritten digits classification algorithms (HB and HeterMIL) are designed and compared for handwritten digits recognition. Experiment results confirmed that the heterogeneous handwritten digits data representation model and recognition algorithms can solve the heterogeneous handwritten digits recognition effectively.","PeriodicalId":126161,"journal":{"name":"IEEE International Conference on Granular Computing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Now more and more heterogeneous handwritten digits data sets appear into sight. But traditional handwritten digits recognition algorithms are usually based on the homomorphism data sets. For solving the problem that handwritten digits data sets of different feature spaces can't compute, we constructed heterogeneous handwritten digits representation model based on multiple instance learning (MIL) where a bag contains handwritten digits data from different feature spaces. Handwritten digits classification algorithms (HB and HeterMIL) are designed and compared for handwritten digits recognition. Experiment results confirmed that the heterogeneous handwritten digits data representation model and recognition algorithms can solve the heterogeneous handwritten digits recognition effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多实例学习的手写数字识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An updated algorithm for fast computing positive region A new classification algorithm based on ensemble PSO_SVM and clustering analysis Rough set over dual-universes in general incomplete information system The research on computing dynamic reduct Qualitative mapping defined wavelet transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1