A TVAR particle filter with adaptive resampling for frequency estimation

Nattapol Aunsri
{"title":"A TVAR particle filter with adaptive resampling for frequency estimation","authors":"Nattapol Aunsri","doi":"10.1109/ISPACS.2016.7824772","DOIUrl":null,"url":null,"abstract":"Extraction of frequency content embedded in a signal is an very important task for signal processing applications. In this paper, we present an approach for frequency tracking of a noisy Time-series using adaptive resampling particle filtering method along with the time-varying autoregressive (TVAR) model. The adaptive resampling scheme is used to address the problem of impoverishment that usually occurred in the conventional resampling stage. Simulation results demonstrate the benefits in using the adaptive method in terms of exhibiting greater tracking results of the frequency content of the signals.","PeriodicalId":131543,"journal":{"name":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2016.7824772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Extraction of frequency content embedded in a signal is an very important task for signal processing applications. In this paper, we present an approach for frequency tracking of a noisy Time-series using adaptive resampling particle filtering method along with the time-varying autoregressive (TVAR) model. The adaptive resampling scheme is used to address the problem of impoverishment that usually occurred in the conventional resampling stage. Simulation results demonstrate the benefits in using the adaptive method in terms of exhibiting greater tracking results of the frequency content of the signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于频率估计的自适应重采样TVAR粒子滤波器
在信号处理应用中,频率内容的提取是一个非常重要的任务。本文提出了一种基于时变自回归(TVAR)模型的自适应重采样粒子滤波方法对含噪时间序列进行频率跟踪的方法。采用自适应重采样方案,解决了传统重采样阶段常出现的贫化问题。仿真结果表明,采用自适应方法可以更好地跟踪信号的频率内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SDN experimental on the PSU network Time frequency analysis: A sparse S transform approach Automatic rule registration and deletion function on a packet lookup engine LSI Study on the latency efficient IFFT design method for low latency communication systems An inverse tone mapping operator based on Reinhard's global operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1