Asymptotic Cost Estimation for Scheduling Data Aggregation Trees in Sensor Networks

Preeti A. Kale, M. Nene
{"title":"Asymptotic Cost Estimation for Scheduling Data Aggregation Trees in Sensor Networks","authors":"Preeti A. Kale, M. Nene","doi":"10.1109/ICCCIS48478.2019.8974518","DOIUrl":null,"url":null,"abstract":"In Wireless Sensor Networks (WSNs), Data Aggregation Trees (DATs) are employed for energy efficient data gathering. Energy efficient data collection is a primary requirement in the smart world of Internet of Things (IoT) as it facilitates to extend the survivability of the network. DATs gather data efficiently by employing data aggregation functions at the aggregator nodes. The employed aggregation function influences the cost of communication and cost of computation at a node. The study in this paper presents the techniques to estimate the communication and computation costs incurred for DAT construction, asymptotically. The strength of the proposed techniques is its ability to enable the estimation of best, average and worst case cost of DAT construction and rescheduling scenarios. Based on the asymptotic analysis, the study in this paper demonstrates the utilization of the proposed techniques to estimate the best and worst cases for communication and computation cost to meet the design objective of adhoc WSN deployments.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In Wireless Sensor Networks (WSNs), Data Aggregation Trees (DATs) are employed for energy efficient data gathering. Energy efficient data collection is a primary requirement in the smart world of Internet of Things (IoT) as it facilitates to extend the survivability of the network. DATs gather data efficiently by employing data aggregation functions at the aggregator nodes. The employed aggregation function influences the cost of communication and cost of computation at a node. The study in this paper presents the techniques to estimate the communication and computation costs incurred for DAT construction, asymptotically. The strength of the proposed techniques is its ability to enable the estimation of best, average and worst case cost of DAT construction and rescheduling scenarios. Based on the asymptotic analysis, the study in this paper demonstrates the utilization of the proposed techniques to estimate the best and worst cases for communication and computation cost to meet the design objective of adhoc WSN deployments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络中数据聚合树调度的渐近代价估计
在无线传感器网络(WSNs)中,数据聚合树(Data Aggregation Trees, dat)被用于高效节能的数据采集。高效节能的数据收集是物联网(IoT)智能世界的主要要求,因为它有助于扩展网络的生存能力。DATs通过在聚合器节点上使用数据聚合功能来有效地收集数据。聚合函数的使用会影响节点上的通信成本和计算成本。本文的研究提出了一种估计数据构造所产生的通信和计算成本的技术。所提出的技术的优势在于它能够估计数据构建和重新调度场景的最佳、平均和最坏情况成本。在渐近分析的基础上,本文论证了利用所提出的技术来估计通信和计算成本的最佳和最差情况,以满足自组网无线传感器网络部署的设计目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survey on Stress Emotion Recognition in Speech Weak Form Efficiency Of Currency Futures: Evidence From India YouTube Video Classification based on Title and Description Text SegNet-based Corpus Callosum segmentation for brain Magnetic Resonance Images (MRI) A synchronizer-mediator for lazy replicated databases over a decentralized P2P architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1