Ming-Dao Wu, Cheng-Chun Huang, W. Shih, S. Fatikow
{"title":"Electrothermal effect on the electrical resistivity of single carbon nanocoils","authors":"Ming-Dao Wu, Cheng-Chun Huang, W. Shih, S. Fatikow","doi":"10.1109/3M-NANO.2012.6472994","DOIUrl":null,"url":null,"abstract":"We electrothermally determined the internal electrical resistivity of a single carbon nanocoil (CNC) which was assembled on the AFM tip. A heat-transfer modeling which considered the Joule's heat was employed to extract the electrical resistivity. The current and resistance of the loop circuits were applied in the calculation in which the thermal measurement was not required. During the electrical measurement, the overall resistance of the heating loop depended on the current variation and decreased abruptly at the beginning of the measurement. It was suggested that the contact resistances between the CNC and metal electrodes were eliminated due to the shortened difference of the work functions between the two materials. The developed electrothermal model agreed well with the experiment at steady state and gave the CNC resistivity of 1.64*10-4~8.81*10-4 Ω-m. This result confirmed the amorphous phase of the synthesized CNC.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We electrothermally determined the internal electrical resistivity of a single carbon nanocoil (CNC) which was assembled on the AFM tip. A heat-transfer modeling which considered the Joule's heat was employed to extract the electrical resistivity. The current and resistance of the loop circuits were applied in the calculation in which the thermal measurement was not required. During the electrical measurement, the overall resistance of the heating loop depended on the current variation and decreased abruptly at the beginning of the measurement. It was suggested that the contact resistances between the CNC and metal electrodes were eliminated due to the shortened difference of the work functions between the two materials. The developed electrothermal model agreed well with the experiment at steady state and gave the CNC resistivity of 1.64*10-4~8.81*10-4 Ω-m. This result confirmed the amorphous phase of the synthesized CNC.