Early Prediction of Employee Attrition using Data Mining Techniques

S. Yadav, Aman Jain, Deepti Singh
{"title":"Early Prediction of Employee Attrition using Data Mining Techniques","authors":"S. Yadav, Aman Jain, Deepti Singh","doi":"10.1109/IADCC.2018.8692137","DOIUrl":null,"url":null,"abstract":"Bill Gates was once quoted as saying, \"You take away our top 20 employees and we [Microsoft] become a mediocre company\". This statement by Bill Gates took our attention to one of the major problems of employee attrition at workplaces. Employee attrition (turnover) causes a significant cost to any organization which may later on effect its overall efficiency. As per CompData Surveys, over the past five years, total turnover has increased from 15.1 percent to 18.5 percent. For any organization, finding a well trained and experienced employee is a complex task, but it’s even more complex to replace such employees. This not only increases the significant Human Resource (HR) cost, but also impacts the market value of an organization. Despite these facts and ground reality, there is little attention to the literature, which has been seeded to many misconceptions between HR and Employees. Therefore, the aim of this paper is to provide a framework for predicting the employee churn by analyzing the employee’s precise behaviors and attributes using classification techniques.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Bill Gates was once quoted as saying, "You take away our top 20 employees and we [Microsoft] become a mediocre company". This statement by Bill Gates took our attention to one of the major problems of employee attrition at workplaces. Employee attrition (turnover) causes a significant cost to any organization which may later on effect its overall efficiency. As per CompData Surveys, over the past five years, total turnover has increased from 15.1 percent to 18.5 percent. For any organization, finding a well trained and experienced employee is a complex task, but it’s even more complex to replace such employees. This not only increases the significant Human Resource (HR) cost, but also impacts the market value of an organization. Despite these facts and ground reality, there is little attention to the literature, which has been seeded to many misconceptions between HR and Employees. Therefore, the aim of this paper is to provide a framework for predicting the employee churn by analyzing the employee’s precise behaviors and attributes using classification techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘技术的员工流失早期预测
比尔•盖茨(Bill Gates)曾经说过:“你拿走了我们最优秀的20名员工,我们(微软)就变成了一家平庸的公司。”比尔·盖茨的这句话引起了我们对工作场所员工流失的一个主要问题的注意。员工流失(离职)会给任何组织带来巨大的成本,这可能会影响组织的整体效率。根据CompData的调查,在过去的五年里,总流动率从15.1%上升到18.5%。对于任何组织来说,找到一名训练有素、经验丰富的员工都是一项复杂的任务,但替换这样的员工就更复杂了。这不仅增加了显著的人力资源(HR)成本,而且影响了组织的市场价值。尽管有这些事实和现实,但很少有人关注这些文献,这些文献已经在人力资源和员工之间播下了许多误解。因此,本文的目的是通过使用分类技术分析员工的精确行为和属性,为预测员工流失提供一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Motifs in DNA Sequences: A Suffix Tree Based Approach Prediction Model for Automated Leaf Disease Detection & Analysis Blind navigation using ambient crowd analysis HUPM: Efficient High Utility Pattern Mining Algorithm for E-Business Algorithm to Quantify the Low and High Resolution HLA Matching in Renal Transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1