Reducing the Spike Rate in Deep Spiking Neural Networks

R. Fontanini, D. Esseni, M. Loghi
{"title":"Reducing the Spike Rate in Deep Spiking Neural Networks","authors":"R. Fontanini, D. Esseni, M. Loghi","doi":"10.1145/3546790.3546798","DOIUrl":null,"url":null,"abstract":"One objective of Spiking Neural Networks is a very efficient computation in terms of energy consumption. To achieve this target, a small spike rate is of course very beneficial since the event-driven nature of such a computation. However, as the network becomes deeper, the spike rate tends to increase without any improvements in the final results. On the other hand, the introduction of a penalty on the excess of spikes can often lead the network to a configuration where many neurons are silent, resulting in a drop of the computational efficacy. In this paper, we propose a learning strategy that keeps the spike rate under control, by (i) changing the loss function to penalize the spikes generated by neurons after the first ones, and by (ii) proposing a two-phase training that avoids silent neurons during the training.","PeriodicalId":104528,"journal":{"name":"Proceedings of the International Conference on Neuromorphic Systems 2022","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Neuromorphic Systems 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546790.3546798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One objective of Spiking Neural Networks is a very efficient computation in terms of energy consumption. To achieve this target, a small spike rate is of course very beneficial since the event-driven nature of such a computation. However, as the network becomes deeper, the spike rate tends to increase without any improvements in the final results. On the other hand, the introduction of a penalty on the excess of spikes can often lead the network to a configuration where many neurons are silent, resulting in a drop of the computational efficacy. In this paper, we propose a learning strategy that keeps the spike rate under control, by (i) changing the loss function to penalize the spikes generated by neurons after the first ones, and by (ii) proposing a two-phase training that avoids silent neurons during the training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降低深度尖峰神经网络的尖峰率
脉冲神经网络的一个目标是在能量消耗方面进行非常高效的计算。为了实现这个目标,小的峰值率当然是非常有益的,因为这种计算具有事件驱动的性质。然而,随着网络变得越来越深,峰值率倾向于增加,而最终结果没有任何改善。另一方面,对峰值过多的惩罚通常会导致网络的配置,其中许多神经元处于沉默状态,从而导致计算效率下降。在本文中,我们提出了一种控制尖峰率的学习策略,通过(i)改变损失函数来惩罚神经元在第一个尖峰之后产生的尖峰,以及(ii)提出一种两阶段训练,在训练过程中避免沉默神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Supervised Graph Structure Learning on Neuromorphic Computers A Neuromorphic Algorithm for Radiation Anomaly Detection Optimizing Recurrent Spiking Neural Networks with Small Time Constants for Temporal Tasks LODeNNS: A Linearly-approximated and Optimized Dendrocentric Nearest Neighbor STDP Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1