Recommending New Items to Ephemeral Groups Using Contextual User Influence

E. Quintarelli, Emanuele Rabosio, L. Tanca
{"title":"Recommending New Items to Ephemeral Groups Using Contextual User Influence","authors":"E. Quintarelli, Emanuele Rabosio, L. Tanca","doi":"10.1145/2959100.2959137","DOIUrl":null,"url":null,"abstract":"Group recommender systems help groups of users in finding appropriate items to be enjoyed together. Lots of activities, like watching TV or going to the restaurant, are intrinsically group-based, thus making the group recommendation problem very relevant. In this paper we study ephemeral groups, i.e., groups where the members might be together for the first time. Recent approaches have tackled this issue introducing complex models to be learned offline, making them unable to deal with new items; on the contrary, we propose a group recommender able to manage new items too. In more detail, our technique determines the preference of a group for an item by combining the individual preferences of the group members on the basis of their contextual influence, where the contextual influence represents the ability of an individual, in a given situation, to direct the group's decision. We conducted an extensive experimental evaluation on a TV dataset containing a log of viewings performed by real groups, showing how our approach outperforms the comparable techniques from the literature.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Group recommender systems help groups of users in finding appropriate items to be enjoyed together. Lots of activities, like watching TV or going to the restaurant, are intrinsically group-based, thus making the group recommendation problem very relevant. In this paper we study ephemeral groups, i.e., groups where the members might be together for the first time. Recent approaches have tackled this issue introducing complex models to be learned offline, making them unable to deal with new items; on the contrary, we propose a group recommender able to manage new items too. In more detail, our technique determines the preference of a group for an item by combining the individual preferences of the group members on the basis of their contextual influence, where the contextual influence represents the ability of an individual, in a given situation, to direct the group's decision. We conducted an extensive experimental evaluation on a TV dataset containing a log of viewings performed by real groups, showing how our approach outperforms the comparable techniques from the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用上下文用户影响向临时组推荐新项目
群组推荐系统帮助群组用户找到合适的项目一起享受。许多活动,如看电视或去餐馆,本质上是基于群体的,因此使得群体推荐问题非常相关。本文研究了短暂群,即群的成员可能是第一次在一起的群。最近的方法解决了这个问题,引入了离线学习的复杂模型,使它们无法处理新项目;相反,我们提出了一个能够管理新项目的群组推荐。更详细地说,我们的技术通过结合群体成员的个人偏好来确定群体对某个项目的偏好,这种偏好基于他们的情境影响,其中情境影响代表了个人在特定情况下指导群体决策的能力。我们对包含真实群体观看日志的电视数据集进行了广泛的实验评估,显示了我们的方法如何优于文献中的可比技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1