Spectral variability in fine-scale drone-based imaging spectroscopy does not impede detection of target invasive plant species

Kelsey Huelsman, H. Epstein, Xi Yang, Lydia Mullori, L. Červená, Roderick Walker
{"title":"Spectral variability in fine-scale drone-based imaging spectroscopy does not impede detection of target invasive plant species","authors":"Kelsey Huelsman, H. Epstein, Xi Yang, Lydia Mullori, L. Červená, Roderick Walker","doi":"10.3389/frsen.2022.1085808","DOIUrl":null,"url":null,"abstract":"Land managers are making concerted efforts to control the spread of invasive plants, a task that demands extensive ecosystem monitoring, for which unoccupied aerial vehicles (UAVs or drones) are becoming increasingly popular. The high spatial resolution of unoccupied aerial vehicles imagery may positively or negatively affect plant species differentiation, as reflectance spectra of pixels may be highly variable when finely resolved. We assessed this impact on detection of invasive plant species Ailanthus altissima (tree of heaven) and Elaeagnus umbellata (autumn olive) using fine-resolution images collected in northwestern Virginia in June 2020 by a unoccupied aerial vehicles with a Headwall Hyperspec visible and near-infrared hyperspectral imager. Though E. umbellata had greater intraspecific variability relative to interspecific variability over more wavelengths than A. altissima, the classification accuracy was greater for E. umbellata (95%) than for A. altissima (66%). This suggests that spectral differences between species of interest and others are not necessarily obscured by intraspecific variability. Therefore, the use of unoccupied aerial vehicles-based spectroscopy for species identification may overcome reflectance variability in fine resolution imagery.","PeriodicalId":198378,"journal":{"name":"Frontiers in Remote Sensing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2022.1085808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Land managers are making concerted efforts to control the spread of invasive plants, a task that demands extensive ecosystem monitoring, for which unoccupied aerial vehicles (UAVs or drones) are becoming increasingly popular. The high spatial resolution of unoccupied aerial vehicles imagery may positively or negatively affect plant species differentiation, as reflectance spectra of pixels may be highly variable when finely resolved. We assessed this impact on detection of invasive plant species Ailanthus altissima (tree of heaven) and Elaeagnus umbellata (autumn olive) using fine-resolution images collected in northwestern Virginia in June 2020 by a unoccupied aerial vehicles with a Headwall Hyperspec visible and near-infrared hyperspectral imager. Though E. umbellata had greater intraspecific variability relative to interspecific variability over more wavelengths than A. altissima, the classification accuracy was greater for E. umbellata (95%) than for A. altissima (66%). This suggests that spectral differences between species of interest and others are not necessarily obscured by intraspecific variability. Therefore, the use of unoccupied aerial vehicles-based spectroscopy for species identification may overcome reflectance variability in fine resolution imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于精细尺度无人机成像光谱的光谱变异性不影响目标入侵植物物种的检测
土地管理者正在齐心协力控制入侵植物的传播,这项任务需要广泛的生态系统监测,为此无人驾驶飞行器(uav或无人机)正变得越来越受欢迎。无人机影像的高空间分辨率可能会对植物物种分化产生积极或消极的影响,因为像素的反射光谱在精细分辨率下可能会发生很大的变化。我们评估了这种对入侵植物物种Ailanthus altissima(天树)和Elaeagnus umellata(秋橄榄)检测的影响,使用的是2020年6月在弗吉尼亚州西北部使用Headwall Hyperspec可见光和近红外高光谱成像仪的无人飞行器收集的精细分辨率图像。尽管在更多波长上,伞形花的种内变异性大于种间变异性,但伞形花的分类准确率(95%)高于伞形花(66%)。这表明,感兴趣的物种和其他物种之间的光谱差异并不一定被种内变异性所掩盖。因此,使用基于无人飞行器的光谱进行物种识别可以克服精细分辨率图像中的反射率变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A near-real-time tropical deforestation monitoring algorithm based on the CuSum change detection method Suitability of different in-water algorithms for eutrophic and absorbing waters applied to Sentinel-2 MSI and Sentinel-3 OLCI data Sea surface barometry with an O2 differential absorption radar: retrieval algorithm development and simulation Assessment of advanced neural networks for the dual estimation of water quality indicators and their uncertainties Selecting HyperNav deployment sites for calibrating and validating PACE ocean color observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1