Optimal Mixed Strategies for Cost-Adversarial Planning Games

Rostislav Horcík, Á. Torralba, Pavel Rytír, L. Chrpa, S. Edelkamp
{"title":"Optimal Mixed Strategies for Cost-Adversarial Planning Games","authors":"Rostislav Horcík, Á. Torralba, Pavel Rytír, L. Chrpa, S. Edelkamp","doi":"10.1609/icaps.v32i1.19797","DOIUrl":null,"url":null,"abstract":"This paper shows that domain-independent tools from classical planning can be used to model and solve a broad class of game-theoretic problems we call Cost-Adversarial Planning Games (CAPGs). We define CAPGs as 2-player normal-form games specified by a planning task and a finite collection of cost functions. The first player (a planning agent) strives to solve a planning task optimally but has limited knowledge about its action costs. The second player (an adversary agent) controls the actual action costs. Even though CAPGs need not be zero-sum, every CAPG has an associated zero-sum game whose Nash equilibrium provides the optimal randomized strategy for the planning agent in the original CAPG. We show how to find the Nash equilibrium of the associated zero-sum game using a cost-optimal planner via the Double Oracle algorithm. To demonstrate the expressivity of CAPGs, we formalize a patrolling security game and several IPC domains as CAPGs.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows that domain-independent tools from classical planning can be used to model and solve a broad class of game-theoretic problems we call Cost-Adversarial Planning Games (CAPGs). We define CAPGs as 2-player normal-form games specified by a planning task and a finite collection of cost functions. The first player (a planning agent) strives to solve a planning task optimally but has limited knowledge about its action costs. The second player (an adversary agent) controls the actual action costs. Even though CAPGs need not be zero-sum, every CAPG has an associated zero-sum game whose Nash equilibrium provides the optimal randomized strategy for the planning agent in the original CAPG. We show how to find the Nash equilibrium of the associated zero-sum game using a cost-optimal planner via the Double Oracle algorithm. To demonstrate the expressivity of CAPGs, we formalize a patrolling security game and several IPC domains as CAPGs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成本对抗计划博弈的最优混合策略
本文展示了经典规划中的领域无关工具可以用来建模和解决一类广泛的博弈论问题,我们称之为成本对抗计划博弈(capg)。我们将capg定义为由计划任务和有限成本函数集合指定的2人标准游戏。第一个参与者(计划代理)努力以最优方式解决计划任务,但对其行动成本的了解有限。第二个玩家(对手代理人)控制实际行动成本。尽管CAPG不一定是零和博弈,但每个CAPG都有一个相关的零和博弈,其纳什均衡为原始CAPG中的规划主体提供了最优随机化策略。我们展示了如何通过双Oracle算法使用成本最优规划器找到相关零和博弈的纳什均衡。为了证明capg的表现力,我们将一个巡逻安全游戏和几个IPC域形式化为capg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1