M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier
{"title":"Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes","authors":"M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier","doi":"10.1109/IEDM.2016.7838515","DOIUrl":null,"url":null,"abstract":"Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thin-body (DG-UTB), a triple-gate FinFET, and a gate-all-around nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of Lg=15 nm and 10.4 nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for Lg=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50–60%.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thin-body (DG-UTB), a triple-gate FinFET, and a gate-all-around nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of Lg=15 nm and 10.4 nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for Lg=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50–60%.