B. Nebendahl, R. Schmogrow, T. Dennis, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Winter, M. Huebner, W. Freude, C. Koos, J. Leuthold
{"title":"Quality Metrics in optical modulation analysis: EVM and its relation to Q-factor, OSNR, and BER","authors":"B. Nebendahl, R. Schmogrow, T. Dennis, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Winter, M. Huebner, W. Freude, C. Koos, J. Leuthold","doi":"10.1364/ACPC.2012.AF3G.2","DOIUrl":null,"url":null,"abstract":"The quality of optical signals is a very important parameter in optical communications. Several metrics are in common use, like optical signal-to-noise power ratio (OSNR), Q-factor, error vector magnitude (EVM) and bit error ratio (BER). A measured raw BER is not necessarily useful to predict the final BER after soft-decision forward error correction (FEC), if the statistics of the noise leading to errors is unknown. In this respect the EVM is superior, as it allows an estimation of the error statistics. We compare various metrics analytically, by simulation, and through experiments. We employ six quadrature amplitude modulation (QAM) formats at symbol rates of 20 GBd and 25 GBd. The signals were generated by a software-defined transmitter. We conclude that for optical channels with additive Gaussian noise the EVM metric is a reliable quality measure. For nondata-aided QAM reception, BER in the range 10-6...10-2 can be reliably estimated from measured EVM.","PeriodicalId":118096,"journal":{"name":"2012 Asia Communications and Photonics Conference (ACP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Asia Communications and Photonics Conference (ACP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ACPC.2012.AF3G.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The quality of optical signals is a very important parameter in optical communications. Several metrics are in common use, like optical signal-to-noise power ratio (OSNR), Q-factor, error vector magnitude (EVM) and bit error ratio (BER). A measured raw BER is not necessarily useful to predict the final BER after soft-decision forward error correction (FEC), if the statistics of the noise leading to errors is unknown. In this respect the EVM is superior, as it allows an estimation of the error statistics. We compare various metrics analytically, by simulation, and through experiments. We employ six quadrature amplitude modulation (QAM) formats at symbol rates of 20 GBd and 25 GBd. The signals were generated by a software-defined transmitter. We conclude that for optical channels with additive Gaussian noise the EVM metric is a reliable quality measure. For nondata-aided QAM reception, BER in the range 10-6...10-2 can be reliably estimated from measured EVM.