Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures

A. Baker, T. Gamblin, M. Schulz, U. Yang
{"title":"Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures","authors":"A. Baker, T. Gamblin, M. Schulz, U. Yang","doi":"10.1109/IPDPS.2011.35","DOIUrl":null,"url":null,"abstract":"Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine its performance and scalability on three disparate multicore architectures: a cluster with four AMD Opteron Quad-core processors per node (Hera), a Cray XT5 with two AMD Opteron Hex-core processors per node (Jaguar), and an IBM Blue Gene/P system with a single Quad-core processor (Intrepid). We discuss our experiences on these platforms and present results using both an MPI-only and a hybrid MPI/OpenMP model. We also discuss a set of techniques that helped to overcome the associated problems, including thread and process pinning and correct memory associations.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine its performance and scalability on three disparate multicore architectures: a cluster with four AMD Opteron Quad-core processors per node (Hera), a Cray XT5 with two AMD Opteron Hex-core processors per node (Jaguar), and an IBM Blue Gene/P system with a single Quad-core processor (Intrepid). We discuss our experiences on these platforms and present results using both an MPI-only and a hybrid MPI/OpenMP model. We also discuss a set of techniques that helped to overcome the associated problems, including thread and process pinning and correct memory associations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在现代多核架构中缩放代数多网格的挑战
代数多重网格(AMG)是一种流行的大规模科学计算求解器,也是许多仿真代码的重要组成部分。AMG已被证明在分布式内存架构上非常高效。然而,当在现代多核架构上执行时,我们面临着可能显著降低AMG性能的新挑战。我们在三种不同的多核架构上检查其性能和可扩展性:每个节点具有四个AMD Opteron四核处理器的集群(Hera),每个节点具有两个AMD Opteron六核处理器的Cray XT5 (Jaguar),以及具有单个四核处理器的IBM Blue Gene/P系统(Intrepid)。我们讨论了我们在这些平台上的经验,并介绍了使用MPI和混合MPI/OpenMP模型的结果。我们还讨论了一组有助于克服相关问题的技术,包括线程和进程固定以及正确的内存关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1