Predicting passenger flow using different influence factors for Taipei MRT system

Y. Shiao, Lijuan Liu, Qiangfu Zhao, R. Chen
{"title":"Predicting passenger flow using different influence factors for Taipei MRT system","authors":"Y. Shiao, Lijuan Liu, Qiangfu Zhao, R. Chen","doi":"10.1109/ICAWST.2017.8256497","DOIUrl":null,"url":null,"abstract":"Nowadays more and more people in the big city rely on public transportations while they go to work or school. MRT (Mass Rapid Transit) is one of the most modern transportations in Taipei. It is a great traffic tool to relieve the pressure of rush hours. According to the statistics, each day there will be over one million of passengers taking the MRT in Taipei. In this paper, we will be predicting MRT passenger flow with random forest, by using different factors collected from the Taipei Main station as input for training. The result shows that some of the influenced factors are important to affect the prediction of the passenger flow.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Nowadays more and more people in the big city rely on public transportations while they go to work or school. MRT (Mass Rapid Transit) is one of the most modern transportations in Taipei. It is a great traffic tool to relieve the pressure of rush hours. According to the statistics, each day there will be over one million of passengers taking the MRT in Taipei. In this paper, we will be predicting MRT passenger flow with random forest, by using different factors collected from the Taipei Main station as input for training. The result shows that some of the influenced factors are important to affect the prediction of the passenger flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不同影响因素的台北捷运系统客流预测
如今,大城市里越来越多的人依靠公共交通工具上班或上学。捷运是台北最现代化的交通工具之一。这是一个很好的交通工具来缓解高峰时间的压力。据统计,台北每天将有超过一百万的乘客乘坐捷运。在本文中,我们将使用随机森林来预测捷运客流,并以台北主站收集的不同因子作为训练输入。结果表明,一些影响因素对客流预测有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1