{"title":"Recommender Systems from an Industrial and Ethical Perspective","authors":"Dimitris Paraschakis","doi":"10.1145/2959100.2959101","DOIUrl":null,"url":null,"abstract":"Over the recent years, a plethora of recommender systems (RS) have been proposed by academics. The degree of adoptability of these algorithms by industrial e-commerce platforms remains unclear. To get an insight into real-world recommendation engines, we survey more than 30 existing shopping cart solutions and compare the performance of popular recommendation algorithms on proprietary e-commerce datasets. Our results show that deployed systems rarely go beyond trivial \"best seller\" lists or very basic personalized recommendation algorithms, which nevertheless exhibit superior performance to more elaborate techniques both in our experiments and other related studies. We also perform chronological dataset splits to demonstrate the importance of preserving the sequence of events during evaluation, and the recency of events during training. The second part of our research is still ongoing and focuses on various ethical challenges that complicate the design of recommender systems. We believe that this direction of research remains mostly neglected despite its increasing impact on RS' quality and safety.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Over the recent years, a plethora of recommender systems (RS) have been proposed by academics. The degree of adoptability of these algorithms by industrial e-commerce platforms remains unclear. To get an insight into real-world recommendation engines, we survey more than 30 existing shopping cart solutions and compare the performance of popular recommendation algorithms on proprietary e-commerce datasets. Our results show that deployed systems rarely go beyond trivial "best seller" lists or very basic personalized recommendation algorithms, which nevertheless exhibit superior performance to more elaborate techniques both in our experiments and other related studies. We also perform chronological dataset splits to demonstrate the importance of preserving the sequence of events during evaluation, and the recency of events during training. The second part of our research is still ongoing and focuses on various ethical challenges that complicate the design of recommender systems. We believe that this direction of research remains mostly neglected despite its increasing impact on RS' quality and safety.