Quantification of differences in root system architecture under maize/soybean interspecific interactions

Fang Hui, Yan Guo, B. Li, Chunli Lv, Yuntao Ma
{"title":"Quantification of differences in root system architecture under maize/soybean interspecific interactions","authors":"Fang Hui, Yan Guo, B. Li, Chunli Lv, Yuntao Ma","doi":"10.1109/PMA.2018.8611603","DOIUrl":null,"url":null,"abstract":"Root system architecture determines the ability of crop in water and nutrient uptake, which affects interspecific facilitation in the maize/soybean intercropping. In this study, field experiments were conducted to investigate the differences of adult root system architecture between maize (Zea mays L.)/soybean (Glycine max L.) intercropping and monocropping. The skeleton of root system was captured with 3D digitalization at filling stage of maize, then the roots were sampled and scanned. Root length and root diameter were extracted from the scanned root images. Root overlap of maize and soybean were calculated by counting the percentage of the points located on axile roots of one plant inside root system of another plant to quantify the interspecific interactions in 3D. The results showed that root-root interactions between maize and soybean altered the root system architecture of both crops. The early axile roots of maize and soybean longer than the late axile roots in two cropping patterns. Maize/soybean interspecific interactions promoted axile root elongation of maize and soybean. The asymmetric interspecific facilitation was found in diameter of axile roots, which was the late axile roots of intercropped maize significantly thicker but most axile roots of intercropped soybean significantly thinner (ANOVA, P < 0.05). Root overlap of maize and soybean in intercropping was about 4.58% and mainly distributed 20~40 cm below soil surface. The axile roots of N1~N3 of maize trended to flatly grow first and rapidly grow downward later, mainly leading to the overlap between maize and soybean root system.","PeriodicalId":268842,"journal":{"name":"2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA)","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2018.8611603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Root system architecture determines the ability of crop in water and nutrient uptake, which affects interspecific facilitation in the maize/soybean intercropping. In this study, field experiments were conducted to investigate the differences of adult root system architecture between maize (Zea mays L.)/soybean (Glycine max L.) intercropping and monocropping. The skeleton of root system was captured with 3D digitalization at filling stage of maize, then the roots were sampled and scanned. Root length and root diameter were extracted from the scanned root images. Root overlap of maize and soybean were calculated by counting the percentage of the points located on axile roots of one plant inside root system of another plant to quantify the interspecific interactions in 3D. The results showed that root-root interactions between maize and soybean altered the root system architecture of both crops. The early axile roots of maize and soybean longer than the late axile roots in two cropping patterns. Maize/soybean interspecific interactions promoted axile root elongation of maize and soybean. The asymmetric interspecific facilitation was found in diameter of axile roots, which was the late axile roots of intercropped maize significantly thicker but most axile roots of intercropped soybean significantly thinner (ANOVA, P < 0.05). Root overlap of maize and soybean in intercropping was about 4.58% and mainly distributed 20~40 cm below soil surface. The axile roots of N1~N3 of maize trended to flatly grow first and rapidly grow downward later, mainly leading to the overlap between maize and soybean root system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米/大豆种间相互作用下根系构型差异的定量分析
根系结构决定了作物对水分和养分的吸收能力,从而影响玉米/大豆间作的种间促进。通过田间试验研究了玉米(Zea mays L.)/大豆(Glycine max L.)间作与单作成体根系构型的差异。利用三维数字化技术对灌浆期玉米根系骨架进行了捕获,并对根系进行了采样和扫描。从扫描的根图像中提取根长和根直径。通过计算一株植物轴根上的点在另一株植物根系内的百分比来计算玉米和大豆的根重叠,以三维方式量化种间相互作用。结果表明,玉米和大豆的根-根互作改变了两种作物的根系结构。两种种植方式下,玉米和大豆的早轴根比晚轴根长。玉米/大豆种间互作促进了玉米和大豆的轴根伸长。间作玉米的中轴根直径存在不对称的种间促进作用,间作大豆的中轴根较粗,间作玉米的中轴根较粗(方差分析,P < 0.05);间作玉米与大豆根系重叠度约为4.58%,主要分布在地表以下20~40 cm处。玉米N1~N3轴根呈先平生后快速下生的趋势,主要导致玉米与大豆根系重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional-structural plant model for testing the effect of maize architecture on hourly light distribution in strip-intercropping systems Three-dimensional quantification of intercropping crops in field by ground and aerial photography A dynamic model of xylem and phloem flux in an apple branch Simulating light spectrum within a soybean canopy in an LED growth chamber Influence of Neighboring Plants on the Variation of Red to Far-Red ratio in Intercropping System: Simulation of light quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1