Speech recognition with very large size dictionary

B. Mérialdo
{"title":"Speech recognition with very large size dictionary","authors":"B. Mérialdo","doi":"10.1109/ICASSP.1987.1169731","DOIUrl":null,"url":null,"abstract":"This paper proposes a new strategy, the Multi-Level Decoding (MLD), that allows to use a Very Large Size Dictionary (VLSD, size more than 100,000 words) in speech recognition. MLD proceeds in three steps:\\bulleta Syllable Match procedure uses an acoustic model to build a list of the most probable syllables that match the acoustic signal from a given time frame.\\bulletfrom this list, a Word Match procedure uses the dictionary to build partial word hypothesis.\\bulletthen a Sentence Match procedure uses a probabilistic language model to build partial sentence hypothesis until total sentences are found. An original matching algorithm is proposed for the Syllable Match procedure. This strategy is experimented on a dictation task of French texts. Two different dictionaries are tested,\\bulletone composed of the 10,000 most frequent words,\\bulletthe other composed of 200,000 words. The recognition results are given and compared. The error rate on words with 10,000 words is 17.3%. If the errors due to the lack of coverage are not counted, the error rate with 10,000 words is reduced to 10.6%. The error rate with 200,000 words is 12.7%.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper proposes a new strategy, the Multi-Level Decoding (MLD), that allows to use a Very Large Size Dictionary (VLSD, size more than 100,000 words) in speech recognition. MLD proceeds in three steps:\bulleta Syllable Match procedure uses an acoustic model to build a list of the most probable syllables that match the acoustic signal from a given time frame.\bulletfrom this list, a Word Match procedure uses the dictionary to build partial word hypothesis.\bulletthen a Sentence Match procedure uses a probabilistic language model to build partial sentence hypothesis until total sentences are found. An original matching algorithm is proposed for the Syllable Match procedure. This strategy is experimented on a dictation task of French texts. Two different dictionaries are tested,\bulletone composed of the 10,000 most frequent words,\bulletthe other composed of 200,000 words. The recognition results are given and compared. The error rate on words with 10,000 words is 17.3%. If the errors due to the lack of coverage are not counted, the error rate with 10,000 words is reduced to 10.6%. The error rate with 200,000 words is 12.7%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音识别与非常大的大小字典
本文提出了一种新的语音识别策略——多级解码(MLD),该策略允许在语音识别中使用超大型字典(VLSD,大小超过100,000个单词)。MLD分三步进行:音节匹配过程使用声学模型来构建一个最可能的音节列表,这些音节与给定时间范围内的声学信号相匹配。从这个列表中,一个单词匹配过程使用字典来构建部分单词假设。然后,句子匹配过程使用概率语言模型建立部分句子假设,直到找到全部句子。对音节匹配过程提出了一种新颖的匹配算法。该策略在一篇法语课文的听写任务中进行了实验。我们测试了两本不同的词典,其中一本包含了1万个最常用的单词,另一本包含了20万个单词。给出了识别结果并进行了比较。1万个单词的错误率为17.3%。如果不计算由于缺乏覆盖而导致的错误,则10000字的错误率降至10.6%。20万字的错误率为12.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1