Using Machine Learning to Predict Development of Heart Failure, during Post-Acute COVID-19, by Race and Ethnicity

Emily Cathey, Bezawit Delelegn, A. Landi, Suchetha Sharma, Johanna J. Loomba, S. Mazimba, Donald E. Brown
{"title":"Using Machine Learning to Predict Development of Heart Failure, during Post-Acute COVID-19, by Race and Ethnicity","authors":"Emily Cathey, Bezawit Delelegn, A. Landi, Suchetha Sharma, Johanna J. Loomba, S. Mazimba, Donald E. Brown","doi":"10.1109/sieds55548.2022.9799382","DOIUrl":null,"url":null,"abstract":"Roughly 6 million Americans have Heart Failure (HF), and this number could increase to 8 million by 2030 [1]. As of early 2022, about 76 million Americans have been diagnosed with novel coronavirus (COVID-19) and of those, around 900,000 have subsequently died [2]. Our goal for this paper is two-fold: 1) use machine learning (ML) algorithms to predict the development of HF during the post-acute COVID-19 period, with emphasis on race and ethnicity, and 2) determine how feature importance differs across the race and ethnicity groups. We apply Logistic Regression, Random Forest Classifier [3], and XGBoost Classifier [4] to predict the development of HF in patients of various races and ethnicities during the post-COVID period. These models show promising results for the use of ML algorithms to predict the development of HF in patients post-COVID.","PeriodicalId":286724,"journal":{"name":"2022 Systems and Information Engineering Design Symposium (SIEDS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Systems and Information Engineering Design Symposium (SIEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sieds55548.2022.9799382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Roughly 6 million Americans have Heart Failure (HF), and this number could increase to 8 million by 2030 [1]. As of early 2022, about 76 million Americans have been diagnosed with novel coronavirus (COVID-19) and of those, around 900,000 have subsequently died [2]. Our goal for this paper is two-fold: 1) use machine learning (ML) algorithms to predict the development of HF during the post-acute COVID-19 period, with emphasis on race and ethnicity, and 2) determine how feature importance differs across the race and ethnicity groups. We apply Logistic Regression, Random Forest Classifier [3], and XGBoost Classifier [4] to predict the development of HF in patients of various races and ethnicities during the post-COVID period. These models show promising results for the use of ML algorithms to predict the development of HF in patients post-COVID.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据种族和民族,使用机器学习预测急性COVID-19后心力衰竭的发展
大约有600万美国人患有心力衰竭(HF),到2030年这一数字可能会增加到800万[1]。截至2022年初,约有7600万美国人被诊断患有新型冠状病毒(COVID-19),其中约90万人随后死亡[2]。本文的目标有两个方面:1)使用机器学习(ML)算法预测COVID-19急性期后心衰的发展,重点关注种族和民族;2)确定不同种族和民族的特征重要性如何不同。我们应用Logistic回归、随机森林分类器[3]和XGBoost分类器[4]来预测不同种族和民族患者在covid后时期的HF发展情况。这些模型显示了使用ML算法预测covid后患者HF发展的有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Linville Creek Bridge: A Case Study of Design Thinking in Structural Engineering Convergence Across Behavioral and Self-report Measures Evaluating Individuals' Trust in an Autonomous Golf Cart Investigating the Illicit Trade of Cultural Property with an Automated Data Pipeline Architecture Investigating Disinformation Through the Lens of Mass Media: A System Design Dynamic Coal Production Line: Plant Design and Analysis Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1