Using Machine Learning to Represent Electromagnetic Characteristics of Arbitrarily-shaped Targets

Xiao-Min Pan, Bo-Yue Song, Si-Lu Huang, X. Sheng
{"title":"Using Machine Learning to Represent Electromagnetic Characteristics of Arbitrarily-shaped Targets","authors":"Xiao-Min Pan, Bo-Yue Song, Si-Lu Huang, X. Sheng","doi":"10.1109/COMPEM.2019.8778911","DOIUrl":null,"url":null,"abstract":"A general data sparse representation of electromagnetic characteristics of an arbitrarily-shaped target is developed by using the machine learning model. The data sparse representation of the electromagnetic response is firstly figured out by the skeletonization technique. The machine learning approach is then employed to construct a general and flexible model which can capture the electromagnetic characteristics of the target of interest. Numerical experiments are conducted to validate the performance of the model.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8778911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A general data sparse representation of electromagnetic characteristics of an arbitrarily-shaped target is developed by using the machine learning model. The data sparse representation of the electromagnetic response is firstly figured out by the skeletonization technique. The machine learning approach is then employed to construct a general and flexible model which can capture the electromagnetic characteristics of the target of interest. Numerical experiments are conducted to validate the performance of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习表征任意形状目标的电磁特性
利用机器学习模型建立了任意形状目标电磁特性的一般数据稀疏表示。首先利用骨架化技术求出电磁响应的数据稀疏表示。然后采用机器学习方法构建一个通用的、灵活的模型,该模型可以捕获感兴趣目标的电磁特性。通过数值实验验证了该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Artificial Neural Network for Electromagnetic Source Reconstruction Liquid Crystal-Based Polarization Reconfigurable Cross-Slot Fed Patch Antenna An Intra Coding Algorithm Of HEVC That Suitable For VLSI Implementation A Novel Millimeter Wave Multiple Beam Antenna with SIW Butler Matrix A Sparse Imaging-based Single Channel Slow-Moving Target Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1