The feature tree: visualizing feature tracking in distributed AMR datasets

Jing Chen, D. Silver, Lian Jiang
{"title":"The feature tree: visualizing feature tracking in distributed AMR datasets","authors":"Jing Chen, D. Silver, Lian Jiang","doi":"10.1109/PVGS.2003.1249048","DOIUrl":null,"url":null,"abstract":"We describe a feature extraction and tracking algorithm for AMR (adaptive mesh refinement) datasets that operates within a distributed computing environment. Because features can span multiple refinement levels and multiple processors, tracking must be performed across time, across levels, and across processors. The resulting visualization is represented as a \"feature tree\". A feature contains multiple parts corresponding to different levels of refinements. The feature tree allows a viewer to determine that a feature splits or merges at the next refinement level, and allows a viewer to extract and isolate a multilevel isosurface and watch how that surface changes over both time and space. The algorithm is implemented within a computational steering environment, which enables the visualization routines to operate on the data in-situ (while the simulation is ongoing).","PeriodicalId":307148,"journal":{"name":"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVGS.2003.1249048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

We describe a feature extraction and tracking algorithm for AMR (adaptive mesh refinement) datasets that operates within a distributed computing environment. Because features can span multiple refinement levels and multiple processors, tracking must be performed across time, across levels, and across processors. The resulting visualization is represented as a "feature tree". A feature contains multiple parts corresponding to different levels of refinements. The feature tree allows a viewer to determine that a feature splits or merges at the next refinement level, and allows a viewer to extract and isolate a multilevel isosurface and watch how that surface changes over both time and space. The algorithm is implemented within a computational steering environment, which enables the visualization routines to operate on the data in-situ (while the simulation is ongoing).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征树:在分布式AMR数据集中可视化特征跟踪
我们描述了一种在分布式计算环境中运行的AMR(自适应网格细化)数据集的特征提取和跟踪算法。因为特性可以跨越多个细化级别和多个处理器,所以必须跨时间、跨级别和跨处理器执行跟踪。结果可视化表示为“特征树”。一个特性包含多个部分,对应于不同层次的细化。特征树允许查看器确定特征在下一个细化级别拆分或合并,并允许查看器提取和隔离多层等值面,并观察该表面如何随时间和空间变化。该算法是在计算导向环境中实现的,这使得可视化例程能够对现场数据进行操作(当模拟正在进行时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SLIC: scheduled linear image compositing for parallel volume rendering Distributed interactive ray tracing of dynamic scenes From cluster to wall with VTK The feature tree: visualizing feature tracking in distributed AMR datasets Parallel cell projection rendering of adaptive mesh refinement data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1